

iQ-Check[™] Legionella spp. for detection and quantification of Legionella spp in all types of water

Summary report July 2023

BIO-RAD 3 boulevard Raymond Poincaré 92430 MARNES – LA - COQUETTE FRANCE

The report includes 39 pages, including 6 appendices. Reproduction of this report is only permitted in its full form

Competencies of the laboratory are certified by COFRAC accreditation for the analysis marked with the symbol*

Foreword

Studied method:

iQ-Check™ *Legionella* spp.

Validation standard

Validation protocol for commercial methods of detection and quantification of *Legionella* and *Legionella pneumophila* by concentration and gene amplification by polymerase chain reaction (PCR) V3.0

Reference method*

<u>NF T90-471 (June 2015)</u>: Water quality- Detection and quantification of *Legionella* and/or *Legionella pneumophila* by concentration and genic amplification by real time polymerase chain reaction (qPCR)

<u>ISO/TS 12869 (April 2019)</u>: Water quality - Detection and quantification of *Legionella spp.* and/or *Legionella pneumophila* by concentration and genic amplification by quantitative polymerase chain reaction (qPCR)

Scope

All types of water

Certification body

AFNOR Certification (https://nf-validation.afnor.org/en/)

<u>1</u>	INTRODUCTION	5
<u>2</u>	REVIEW OF CHANGES IN THE ALTERNATIVE METHOD SINCE THE PREVIOUS VALIDATION	5
2.1	HISTORY OF VALIDATION	5
2.2	REVIEW OF CHANGES IN THE ALTERNATIVE METHOD	7
2.3	REVIEW OF USER COMPLAINTS ABOUT THE METHOD	8
<u>3</u>	METHODS PROTOCOLS	8
3.1	PRINCIPLE OF ALTERNATIVE METHOD	8
3.2	PROTOCOL REFERENCES	9
3.3	RESTRICTIONS	9
3.4	REFERENCE METHOD	9
<u>4</u>	SUMMARY OF RESULTS	10
4.1	COMPARATIVE STUDY	10
4.1	.1 FITTING THE CALIBRATION AND THE REFERENCE MATERIAL TO THE PRIMARY STANDARD	10
4.1	2 STUDY OF THE CALIBRATION FUNCTION OF THE QUANTITATIVE PCR STEP	11
4.1	3 LIMIT OF DETECTION	14
4.1	4 LIMIT OF QUANTIFICATION	15
4.1		16
4.1		16
4.1		18
4.1	8 PRACTICABILITY	19
4.2		20
4.2		20
4.2		20
4.2	2.3 CONCLUSION	21
<u>5</u>	GENERAL CONCLUSIONS	21
<u>6</u>	BIBLIOGRAPHY	22
<u>AP</u>	PENDIX 1: FITTING TO THE PRIMARY STANDARD	23
<u>AP</u>	PENDIX 2: CALIBRATION FUNCTION	24
<u>AP</u>	PENDIX 3: LIMIT OF DETECTION	27
<u>AP</u>	PENDIX 4: LIMIT OF QUANTIFICATION	28

APPENDIX 5: YIELD AND ROBUSTNESS	29
APPENDIX 6: SELECTIVITY	38

1 Introduction

iQ-Check[™] Legionella spp. and iQ-Check[™] Legionella pneumophila kits were validated in 2007. Then, they were renewed in 2011, 2015, 2019 and extended in 2012 and 2020.

In 2023, Bio-Rad wishes to extend the use of this method on their new CFX Opus 96 thermal cyclers and to demonstrate the ability to save the calibration curve generated by a batch for reuse it until the end of the batch. This extension has been realized according to the "Validation protocol for commercial methods of detection and quantification of *Legionella* and *Legionella pneumophila* by concentration and gene amplification by polymerase chain reaction (PCR) V3.0".

2 Review of changes in the alternative method since the previous validation

2.1 <u>History of validation</u>

2007:

The method was initially validated in 2007.

2011:

- 2010/211 study for renewal of validation considered the modifications of validated kit and of validation protocol (renewal n°1 considering norm NF T90-471 published in April 2010).
- A third-party study has focused on two first phases of validation protocol aiming to verify supplier announced performances for new formulation of iQ-Check[™] L. spp. kit:
 - Phase 1: Study of limit of detection and limit of quantification of PCR step, calibrating function, link to primary standard, efficiency and robustness of extraction with Aquadien[™] kit. New thermal cycler CFX 96 was implemented.
 - Phase 2: Study of inclusivity and of exclusivity, of practicability and of reagents quality.
- Interlaboratory study realized in 2007 was not made again
- New modification from initial validation was:
 - iQ-Check[™] L. spp. kit: New origin of Taq polymerase and chemical evolution of IPC probe (TEXAS RED fluorophore was replaced by HEX fluorophore)
 - Aquadien Kit: two modalities of utilization according to sample filterability (protocol W2 for clogging samples added to classical protocol) and horizontal double- tangential microfiltration for DNA purification step. Membranes and materials composition do not change.
 - New thermal cycler can be used: CFX96 with CFX Manager Software Industrial Diagnostic Edition version V1.1.

2012:

- Validation extension was pronounced in 2012 after evolution of characteristics of thermal cycler CFX96 which becomes CFX96 Deep Well Touch. Modifications concern reactional volume of heating block, user interface (keyboard and screen), and software CFX Manager which pass in version V1.2
- AFNOR Certification Technical office qualified theses evolutions as minority and without impact on kit performance. No new assays were performed.

2013:

- Late May 2013: Validation of iQ-Check[™] L. pneumophila method was extended to norm ISO/TS 12869. No study complement was necessary: Assays performed according to norm NF T90-471 answers to requirements of ISO/TS 12869 and follow migration to revision 2 of validation protocol.
- November 2013: Evolution of software CFX manager IDE v2.1. No study complement was necessary.

2015:

- March 2015: Evolution of software CFX manager IDE v2.2. No study complement was necessary.
- ◆ October 2015: Renewal of iQ-Check[™] L. pneumophila method with extension on detection (qualitative research) of Legionella pneumophila without supplementary test. AFNOR Certification Technical office qualified this evolution without impact on kit performance. No new assays were performed.

2018:

 June 2018: Evolution of the CFX manager IDE v3.0 software version. No further validation studies were required

2019:

◆ December 2019: Renewal of iQ-Check[™] Legionella spp. and Legionella pneumophila methods. No new assays were performed.

2020:

◆ December 2020: Extension of iQ-Check[™] Legionella spp. and Legionella pneumophila methods. Modifications of the protocols of DNA extraction with Aquadien[™] kit. The extension of the iQ-Check[™] Legionella only concerned the study of the yield and robustness.

2023:

◆ June 2023: Extension of iQ-Check[™] Legionella spp. and Legionella pneumophila methods. Extension of the use of this method on their new CFX Opus 96 thermal cyclers. The extension of the iQ-Check[™] Legionella only concerned a verification of the performances of the calibration function of the new thermal cycler in comparison with the previously validated thermal cycler and evolution of the "CFX Manager Industrial Diagnostic Edition" software from version V3.0 to version V3.1. All the thermal cyclers validated can be used with this version of the software. Demonstration of the ability to save the calibration curve generated by a batch for reuse it until the end of the batch

Method	Date of approval	Type of validation	comments	Expert laboratory	Protocol of validation
	18/12/2007	Validation		IPL SED Nord	Rev. 0 (2006)
	10/06/2011	Renewal 1	Evolution of mix PCR 2 extraction modalities (protocol W2) Update according to the version 1 protocol	IPL SED Nord	Rev. 1 (2011)
	04/04/2012	Extension 1	New thermal cycler (Deep Well touch)	Eurofins IPL Nord	Rev. 1 (2011)
	27/05/2013	Extension 2	Protocol of validation V.2	NA	Rev. 2 (2013)
	05/11/2013	Modification	Software V2.1	NA	Rev. 2 (2013)
	09/03/2015	Modification	Software V2.2	NA	Rev. 2 (2013)
iQ-Check [™] <i>Legionella</i> spp.	18/12/2015	Renewal 2	The modifications between the version 2.0 and 3.0 of the AFNOR validation protocol relates to the positivity threshold (quantitative detection). There was no additional study.	AdGène (with extension on qualitative test)	Rev. 3 (2015)
	June 2018		Software V3.0		
	Dec. 2019	Renewal 3	There was no additional study.	AdGène	Rev. 3 (2015)
	2020	Extension 3	Evolution of DNA extraction kit Aquadien [™] protocols: short protocols & Free DNA Removal Solution protocol (FDRS protocol)	AdGène	Rev. 3 (2015)
	2023	Renewal 4 and Extension 4	New thermal cycler (CFX Opus 96) Software V3.1 – Saving of the calibration curve	Upscience	Rev. 3 (2015)

The validation history is summarized in the following table:

2.2 <u>Review of changes in the alternative method</u>

The validation protocol is identical to that of the last renewal.

Changes to the alternative method : none

This extension study is due to the releasing of the new CFX Opus 96 thermal cyclers (CFX Opus 96 and CFX Opus 96 Deep Well). The CFX Opus 96 thermal cyclers uses

the same technology as the previous CFX96 (Peltier heating block), the same software^{*} to interpret the results, the same thermal profiles. The changes are mainly in terms of design & connectivity (Wi-Fi, Ethernet and USB; Cloud connectivity). For this extension, a verification of the performances of the calibration function of the new thermal cycler, the CFX Opus 96, in comparison with the previously validated thermal cycler, the CFX 96, has been realized.

*Evolution of the "CFX Manager Industrial Diagnostic Edition" software from version V3.0 to version V3.1. The calculation algorithm as well as the criteria for interpreting the results remain unchanged. This new version is required for piloting actual and the new thermal cyclers.

2.3 <u>Review of user complaints about the method</u>

No user customer claims have been registered by AFNOR Certification.

3 Methods protocols

3.1 Principe of alternative method

iQ-Check[™] Legionella spp. kit is intended to detect or to quantify bacteria genus Legionella in water sample, due to Polymerase Chain Reaction (PCR). PCR allows amplification and detection of specific sequences with specific primers and fluorescent probe.

Principle is based on three steps:

- Sample filtration
- DNA extraction with Aquadien[™] kit (and W2 protocol for clogging samples and Free DNA Removal Solution protocol (FDRS)).
- Legionella spp. target sequences amplification.

DNA extraction with Aquadien kit is based on alkaline lysis with thermal shock. It is followed by an ultrafiltration purification step. A DNA fraction is amplified by real-time PCR (Amplification of a virulence gene (*mip*) for *L. pneumophila* and a structural gene (rRNA5S) for L. spp.).

Primers hybridize to target sequence during PCR reaction. Taq polymerase uses primers and nucleosides triphosphate (dNTPs) to stretch DNA and to create copies of *Legionella* spp. target DNA.

Specific probe hybridizes to amplicons during PCR. This probe is labelled with a fluorophore which emit fluorescence only after hybridization. Fluorescence intensity increases proportionally with increasing of PCR products.

Fluorescence is directly measured by optical machinery of the thermal cycler during hybridization step. Thermal cycler software cast in real-time the measured fluorescence function of number of amplification cycles. Software determines a Ct (cycle from which fluorescence is higher than background signal). Reading Ct permits to detect presence of *Legionella* spp. target sequences. Detection of target sequences indicates presence of the bacteria in analyzed water sample.

Quantification is possible by using calibrated DNA solutions iQ-Check[™] Legionella Quantification Standards. These standards are connected to primary standard of Centre National de Référence des Légionelles.

PCR inhibition phenomenon is detected by utilization of a synthetic DNA (internal control – IPC) included in amplification solution with each sample. IPC is amplified during same time than target sequences, with same primers but with a different probe and a different fluorophore.

Software	Opticon Monitor 3.4	CFX manager Software Industrial Diagnostic Edition V2.2	CFX manager Software Industrial Diagnostic Edition V3.0	CFX manager Software Industrial Diagnostic Edition V3.1
Thermal cyclers	Chromo4	CFX96	CFX96 CFX96 Deep Well	CFX96 CFX96 Deep Well CFX Opus 96

iQ-Check[™] Legionella spp. kits are validated with the following materials:

3.2 <u>Protocol references</u>

Aquadien[™] (Ref. 3578121): 12/2015 – Code : 881116 iQ-Check[™] *Legionella* spp. (Ref. 3578102): 12/2015 – Code : 881117

3.3 <u>Restrictions</u>

The kit certification is for use with Bio-Rad Chromo[™]4; CFX96 Deepwell and CFX Opus 96 thermal cyclers.

3.4 <u>Reference method*</u>

NF T90-471 (June 2015): Water quality- Detection and quantification of Legionella and/or Legionella pneumophila by concentration and genic amplification by real time polymerase chain reaction (qPCR)

- ISO/TS 12869 (April 2019): Water quality Detection and quantification of Legionella spp. and/or Legionella pneumophila by concentration and genic amplification by quantitative polymerase chain reaction (qPCR)
- Validation protocol for commercial methods of detection and quantification of Legionella and Legionella pneumophila by concentration and gene amplification by polymerase chain reaction (PCR) V3.0

4 Summary of results

The results presented below were obtained with the V1.0, V2.0 and the V3.0 revisions of the validation protocol for commercial methods of detection and quantification of *Legionella* and *Legionella pneumophila* by concentration and gene amplification by polymerase chain reaction (PCR).

Results obtained for the verification of the performances of the calibration function of the CFX Opus 96 new thermal cycler in comparison with the previously validated CFX 96 thermal cycler have been included (2023).

4.1 <u>Comparative study</u>

4.1.1 Fitting the calibration and the reference material to the primary standard* These results have been obtained by the laboratory IPL SED Nord (2011).

Methodology

Linking of working calibration solution to primary standard is made to cover the quantification domain with 3 ranges of calibrated DNA iQ-CheckTM Legionella spp. which contain 4 levels of concentrations of Genome Unity of Legionella pneumophila serogroup (QS1, QS2, QS3, QS4) and 3 independent ranges of primary standard aiming at the 4 levels of concentrations of range of calibrated DNA iQ-CheckTM Legionella Quantification Standards.

Linking of reference material to primary standard is evaluated analysing results of 2 deposits of reference material given with iQ-Check[™] *Legionella* spp. kit.

Results

Analysed parameters for evaluation of linking of calibration solution and of reference material to primary standard on thermal cycler **<u>CFX96</u>** and **<u>Chromo 4</u>** are submitted in next table:

	Regression curve	Correlation	Efficiency (%)
Reference range (CFX96)	C(t) average = -3,198.log(x) + 39,076	0,998	105,5
Reference range (Chromo 4)	C(t) average = -2,891.log(x) + 38,674	0,995	121,75

Calibration solution		Calibration error			
	QS1	QS2	QS3	QS4	
Per level (CFX96)	0,07	0,20	0,14	0,07	
Per level (Chromo 4)	0,03	0,30	0,23	0,16	
Average (CFX96)		0,12			
Average (Chromo 4)		0,18*			
Slopes equivalence (CFX96) 0,00					
Slopes equivalence (Chromo 4)		0,13			

Reference material	Calibration error
CFX96	0,19
Chromo 4	0,19

* Calibration error of calibration solution is 0.18log with thermal cycler Chromo4. However, equivalence of slopes from reference range and calibration solution range is verified.

Calibration error of calibration solution is lower than 0.15log. Slopes from reference range and calibration solution range are equivalent.

The raw data are presented in Appendix 1.

Conclusion

Calibration solution and reference material of iQ-Check[™] *Legionella* spp. kit satisfy conditions of linking to primary standard with thermal cycler CFX96.

Calibration solution globally satisfies conditions of linking to primary standard with thermal cycler Chromo 4. Reference material of iQ-Check[™] Legionella spp. kit satisfies conditions of linking to primary standard with thermal cycler Chromo 4.

4.1.2 Study of the calibration function of the quantitative PCR step* These results have been obtained by the laboratory IPL SED Nord (2011) and by the laboratory Upscience (2023).

Methodology

Study of calibration function is made deposit 5 different reference ranges of calibrated DNA solution iQ-Check[™] *Legionella* Quantification Standards (comprising 4 levels of

concentration of Genome Unity of *Legionella pneumophila*), given with iQ-Check™ *Legionella* spp. kit.

5 measures are made with iQ-Check[™] Legionella spp. kit for each level of concentration in reproducibility conditions.

Results obtained by the laboratory IPL SED Nord (2011)

Equation of regression curve and efficiency of PCR reaction are defined in these conditions. Results are obtained on <u>CFX96</u>.

	QS1	QS2	QS3	QS4
Bias	0,06	-0,10	0,00	0,04
Standard deviation	0,12	0,06	0,08	0,05
Exactitude of linearity	0,13	0,12	0,08	0,07
Uncertainty of linearity	0,42	0,37	0,27	0,22

Regression curve	-3,197.log(x) + 41,347
Efficiency	105,5%
r ²	0,998

Results obtained by the laboratory Upscience (2023)

Results of the comparison obtained on CFX96 and CFX Opus 96 :

CFX96						
	QS1 QS2 QS3 QS4					
Bias	0,09	0,10	0,10	0,11		
Standard deviation	0,06	0,02	0,02	0,03		
Exactitude of linearity	0,11	0,10	0,10	0,11		
Uncertainty of linearity	0,31	0,28	0,29	0,32		

Regression curve	-3,098.log(x) + 38,859	
Efficiency	110,3%	
r ²	0,993	

CFX Opus 96						
	QS1 QS2 QS3 QS4					
Bias	0,00	0,03	0,05	0,02		
Standard deviation	0,03	0,01	0,01	0,08		
Exactitude of linearity	0,03	0,03	0,05	0,08		
Uncertainty of linearity	0,09	0,09	0,13	0,23		

AFNOR Validation by AFNOR Certification Summary report iQ-Check[™] *Legionella* spp.

V0 July 2023

Regression curve	-3,048.log(x) + 38,67
Efficiency	112,9%
	0,999

The raw data are presented in Appendix 2.

Conclusion

Linear regression satisfies exigence of exactitude lower than 0.15log for each level of reference range both the CFX 96 and CFX Opus 96 thermal cyclers. Linearity is verified on the whole domain cover by the range of calibrated DNA solution iQ-Check[™] *Legionella* Quantification Standards given with iQ-Check[™] *Legionella* spp. kit.

Complementary study – Save of the calibration curve

In 2023, Bio-Rad wishes to demonstrate the ability to save the calibration curve generated by a batch for reuse it until the end of the batch. For that, calibration curve is analysed with the 4 levels of concentration (QS1; QS2; QS3; QS4) before to save this generated curve. Then, the QS2 point was analysed over several weeks to verify conformity.

	Calibrati	on curve		
Nom	QS1	QS2	QS3	QS4
Copy number (log)	1,28	2,59	3,59	4,59
CFX 96	34,90	31,08	28,00	24,15
CFX 90	34,59	31,03	27,93	24,19
	34,94	30,75	27,60	24,26
CFX Opus 96	34,33	30,92	27,61	24,34

		CF	X 96		
QS2 =	-		390 cop	ies (Log : 2,5	59)
Date	Point	СТ	Copy number	Log copy number	Deviation theoretical value (Log)
15/05/2023	QS2	30,47 30,62	510 457	2,71 2,66	0.12 0.07
23/05/2023	QS2	30,48 30,48	507 507	2,70 2,70	0.11 0.11
26/05/2023	QS2	31,06 31,02	329 339	2,52 2,53	-0.07 -0.06
30/05/2023	QS2	31,02	339	2,53	-0.06

V0 July 2023

		CFX O	PUS 96		
QS2	=		390 cop	oies (Log : 2	,59)
Date	Point	СТ	Copy number	Log copy number	Deviation theoretical value(Log)
15/05/2023	QS2	30,83 30,85	373 368	2,57 2,57	-0.02 -0.02
23/05/2023	QS2	30,73 30,73	403 403	2,60 2,60	0.01 0.01
26/05/2023	QS2	31,23 31,25	276 272	2,44 2,43	-0.15 -0.16
30/05/2023	QS2	31,17 31,19	289 284	2,46 2,45	-0.13 -0.14

The calculated quantity of the QS is within $\pm 0.3 \log$ of the theorical value. The results of the save of the calibration curve are satisfactory.

4.1.3 Limit of detection*

These results have been obtained by the laboratory IPL SED Nord (2011).

Methodology

Evaluation of limit of detection is made from 30 independent dilutions of *Legionella pneumophila* DNA in concentration of 5GU per PCR reaction. Duplicate amplifications are made in repeatability conditions. Results are obtained on <u>CFX96</u>.

Results

Echantillons à la concentration 5UG

Sample	C(t)		SQ
e1	37,88	33,12	6,445
e1	37,73	33,12	7,232
e2	39,38	36,36	1,982
e2	38,41	34,8	4,257
e3	37,65	34,56	7,690
e3	38,19	34,14	5,046
e4	37,92	34,09	6,237
e4	38,12	34,01	5,328
e5	38,25	32,97	4,826
e5	37,77	33,71	7,028
e6	38,99	35,71	2,685
e6	38,34	34,12	4,496
e7	38,1	34,39	5,432
e7	38,02	34,24	5,775
e8	39,21	34,53	2,268
e8	37,86	34,21	6,526
e9	37,39	32,78	9,424
e9	37,82	33,79	6,734
e10	41,57	39,12	0,356
e10	37,97	34,42	5,989
e11	38,9	34,49	2,887
e11	38,13	34.04	5,271
e12	38,93	34,35	2,816
e12	37,85	34.08	6,557
e13	37,15	32,87	11,400
e13	38,08	34,53	5,489
e14	38,19	34,68	5,041
e14	38,56	34,31	3,786
e15	37,91	34,44	6,301
e15	38,43	34,93	4,193
e16	38,04	34,35	5,667
e16	37.42	34.07	9,195
e17	37.32	32.73	9,950
e17	38 47	35 11	4 058

The raw data are presented in Appendix 3.

Conclusion

The 30 duplicates are positives. Limit of detection is validated for 5 GU per PCR reaction.

The majority of Ct in previous table are lower than intercept and the rare values above do not impact the compliance of the detection limit at 5 UG per PCR. Qualitative detection is conforming.

4.1.4 Limit of quantification*

These results have been obtained by the laboratory IPL SED Nord (2011).

Methodology

Evaluation of limit of quantification is made from 30 independent dilutions of *Legionella pneumophila* DNA in concentration of 15GU per PCR reaction. Duplicate amplifications are made in repeatability conditions. Results are obtained on <u>CFX96</u>.

Results

	Results	Theoretical values or validation criteria
Average x' (Log GU/reaction)	1,309	1,279
Standard deviation (Log GU/ reaction)	0,097	
Bias	0,030	
LQ Exactitude	0,101	0,15
LQ Uncertainty	0,207	

The raw data are presented in Appendix 4.

Conclusion

Value of exactitude of limit of quantification is estimated at 0.101 log. This value is lower than 0.15 log. Limit of quantification is validated for 15 GU per PCR reaction for iQ-Check[™] Legionella spp. kit.

4.1.5 Positivity threshold

These results have been obtained by the laboratory IPL SED Nord (2011).

User manual foresees a Ct of 43 hereafter whose samples are considered as lower than the limit of detection.

All values for characterisation of limit of detection have Ct lower than 43. This value corresponds to the positivity threshold lower than limit of detection.

4.1.6 Study of the yield and robustness*

Results for Aquadien^M and Aquadien W2 (for clogging waters) protocols have been obtained by the laboratory **IPL SED Nord** in **2011**. Results for Aquadien^M; Aquadien W2; and FDRS short protocols have been obtained in **2020** by the laboratory **AdGène**.

Methodology

Studies of extraction efficiency were realized with extraction kit Aquadien[™] (for clean waters) and Aquadien W2 (for clogging waters). Efficiency was evaluated on 10 independent samples, which were artificially contaminated with two levels of concentrations of *Legionella pneumophila* ATCC 33152 (1000 and 100 000 GU / PCR reaction). Samples were 3 different matrices: sterile water, domestic hot water and water from air cooling-tower.

Samples were artificially contaminated by primary bacterial suspension. The concentration was determined by 3 quantifications after an extraction step of DNA by direct lysis on 3 aliquots. Results are obtained on <u>CFX96</u>.

		YIELD			
		Aquadier	Protocol	Aquadien V	V2 Protocol
		Log	Average	Log	Average
Domestic hot water	1000 GU/L	-0,29 -0,39	-0,34	-0,16 -0,45	- 0,30
Water from air cooling- tower	100 000 GU/L	-0,09 -0,31	-0,20	-0,45 -0,45 -0,47	- 0,46
Mineral water	1000 GU/L	-0,25 -0,42	-0,33	-0,55 -0,46	- 0,50
Average efficiency (log)		-0,	29	-0,	41
Variance (log)		0,	04	0,	03
Global extended uncertain	ity (log)	0,	71	0,	89

Results

			Y	IELD			
		-	ien Short btocol	Aquadien \ Proto		•	dien FDRS rt Protocol
		Log	Average	Log	Average	Log	Average
Domestic hot water	1000 GU/L 100 000 GU/L	-0.37 -0.30	-0.34	-0.26 -0.23	-0.24	-0.30 -0.22	-0.26
Water from cooling- tower	1000 GU/L 100 000 GU/L	-0.37 -0.28	-0.32	-0.37 -0.35	-0.36	-0.35 -0.35	-0.35
Mineral water	1000 GU/L 100 000 GU/L	-0.40 -0.28	-0.34	-0.38 -0.36	-0.37	-0.34 -0.31	-0.32
Average yie	ld (log)	-().33	-0.3	32		-0.31
Variance (Ic	og)	C	.01	0.0	2		0.01
Global uncertainty	extended (log)	C).71	0.6	9		0.66

The raw data are presented in Appendix 5.

Conclusion

Study of efficiency and robustness of extraction method allows evaluating average efficiency of:

- Aquadien method: -0,34 log
- Aquadien W2 method: -0,49 log
- Aquadien short method: -0,33 log
- Aquadien W2 short method: -0,32 log
- Aquadien FDRS short method: -0,31 log

Efficiencies with five extraction methods are conforming to criteria $-0.6 \log / +0.3 \log$ (equivalent to efficiency comprise between 25% and 199%).

4.1.7 Selectivity: inclusivity and exclusivity*

These results have been obtained by the laboratory IPL SED Nord (2011).

DNA was extracted from pure bacterial suspension for each strain.

Inclusivity

Inclusivity assays were realized on DNA extracts with concentration about 100 GU/ PCR reaction. Concentrations were estimated by O.D._{600nm} of bacterial suspension. DNA of 35 strains of tested *Legionella* (15 *Legionella pneumophila* et 20 *Legionella* spp.) were amplified.

The raw data are presented in Appendix 6.

Exclusivity

Exclusivity assays were realized on DNA extracts with concentration about 10 000 GU/ PCR reaction. Concentrations were estimated by O.D._{600nm} of bacterial suspension. DNA of 16 strains of tested were not amplified, except 5 of them which show weak amplification.

The raw data are presented in Appendix 6.

Conclusion

The selectivity of the iQ-Check[™]® *Legionella* spp. kit is satisfactory.

Protocol	R1 solution	W2 solution	FDRS solution	R2 solution	Time
Aquadien	2 mL	-	-	100 μL	1h10
Aquadien short	1 mL	-	-	100 μL	40 min
Aquadien W2	2 mL	200 µL	-	350 μL	1h10
Aquadien W2 short	1 mL	100 µL	-	225µL	1h10
Aquadien FDRS short	500 μL	-	40µL	100 μL	1h10

4.1.8 Practicability

- Ease of use: reagents are all supplied with kits and are ready-to-use. Serial analyses from 1 to 30 samples, for quantification, are easy to make. A technician, who knows microbiology and molecular biology techniques and the specific thermal cycler and its software, can be trained in 1 day.
- Fast results report: duration of different phases is compatible with a short results report (5 hours)
- Results security: It guarantees by utilization of inhibition internal control (in same reaction well than sample) and by a software of results analysis. Use of software ensures traceability of complete information.

4.2 Inter-laboratory study

4.2.1 Methodology

Inter-laboratories study was realized in 2007 with 14 collaborating laboratories. Results of one laboratory were not taken into account because of technical problem which invalidated standardization. 13 laboratories were retained for statistical exploitation.

Goal of this study is to evaluate fidelity (repeatability and reproducibility) of iQ-Check™ *Legionella* spp. method:

- For only amplification step (2 DNA solutions of *L. anisa* et *L. pneumophila* sg1 at 2 different levels of concentration).
- For complete analysis (concentration, lysis, extraction, purification and gene amplification) on characterized bacterial suspensions of *L. pneumophila* and *Escherichia coli* (CIP 54.8) at 2 different levels of concentration).
- For whole analysis in real situation (hot domestic water naturally contaminated by *L. pneumophila* and *Legionella* spp.).
- For a water guarantees without any DNA of *Legionella*.

	Sample types	Calibrated DN	IA solutions	Contaminated water	hot domestic	Natural water
Contamination levels	L. pneumophila ATCC 33152	2000 GU/µl	20000 GU/µl	4000 GU/200 ml	40000 GU/200 ml	Hot domestic water
(GU/L)	L. anisa	500 GU/µl	5000 GU/µl	1000 GU/200 ml	10000 GU/200 ml	naturally contaminated
	E. coli			5000 GU/200 ml	50000 GU/200 ml	
	participating	14	14	14	14	14
Number of laboratories	Retain	13	13	13	13	13
	Analysis number	20	20	9	9	9
Homogeneity assay	Average (Log)	2.91	3.97	3.42	4.41	3.76
	Average (Log)	3.02	4.11	3.52	4.47	3.69
	r (Log)	0.18	0.15	0.28	0.34	0.46
	R (Log)	0.43	0.32	0.72	0.66	0.8
	Sr (Log)	0.06	0.06	0.10	0.12	0.16
	SR (Log)	0.14	0.10	0.24	0.20	0.23

4.2.2 Results

4.2.3 Conclusion

Repeatability values in r (log) are about 0.15 for DNA solutions (only PCR step) and about 0.7 for bacterial suspensions (global method). This is acceptable. Signification of these results is that we can wait for factor 2 measurement of deviation in a same laboratory. Repeatability is not a major source of error.

Reproducibility values in R (log) are about 0.4 for DNA solutions (only PCR step) and about 0.7 for bacterial suspensions (global method). Compared to repeatability, this order of magnitude is equivalent to values that we can obtain for environmental microbiology analyses. Signification of these results is that we can wait for factor 5 of measurement deviation between 2 different laboratories. Reproducibility does not participate in an unreasonable way to result dispersion.

5 General conclusions

Performances of iQ-Check[™] Legionella spp. method are conforming to requirement of norms NF T90-471 and ISO/TS 12869, and of AFNOR validation protocol: "Validation protocol for commercial methods of detection and quantification of Legionella and Legionella pneumophila by concentration and gene amplification by polymerase chain reaction (PCR) V3.0".

The evolution of the "CFX Manager Industrial Diagnostic Edition" software from version V3.0 to version V3.1 required for piloting actual and the new thermal cyclers, does not affect the results given that the calculation algorithm as well as the criteria for interpreting the results remain unchanged.

iQ-Check^{™®} *Legionella* spp. kit is a kit validated for <u>Detection and Quantification</u> of *Legionella* and/or *Legionella pneumophila* by concentration and gene amplification by real-time Polymerase Chain Reaction (qPCR).

Done at Thury-Harcourt, July 3, 2023 Mickaël MORVAN Research & Development Engineer

6 Bibliography

Six studies have been published since 2008:

- Wéry, N., Bru-Adan, V., Minervini, C., Delgénes, J.-P., Garrelly, L., Godon, J.-J., 2008. <u>Dynamics of Legionella spp. and Bacterial Populations during the</u> <u>Proliferation of L. pneumophila in a Cooling Tower Facility.</u> Applied and Environmental Microbiology, 74(10), 3030–3037.
- Ditommaso, S., M., Elisa Ricciardi, S., Giacomuzzi, R. Arauco Rivera, S., M. Zotti, C., 2015. <u>Legionella in water samples: How can you interpret the results obtained by quantitative PCR?</u> Molecular and Cellular Probes. 29:7–12.
- Ditommaso, S., Giacomuzzi, M., Elisa Ricciardi, M. Zotti, C., 2016. Cultural and Molecular Evidence of Legionella spp. Colonization in Dental Unit Waterlines: Which Is the Best Method for Risk Assessment? International Journal of Environmental Research and Public Health. 13(2): 211
- Montagna, M. T., De Giglio, O., Cristina, M.L., Napoli, C., Pacifico, C., Agodi., A., Baldovin, T., Casini, B., Coniglio., M. A., Mario D'Errico, M., Delia, S. A., Deriu, M. G., Guida, M., Laganà, P., Liguori, G., Moro, M., Mura, I., Pennino, F., Privitera, G., Spica, V.R., Sembeni, S., Spagnolo, A.M., Tardivo, S., Torre, I., Valeriani, F., Albertini, R., Pasquarella, C., **2017**. <u>Evaluation of Legionella Air</u> <u>Contamination in Healthcare Facilities by Different Sampling Methods: An</u> <u>Italian Multicenter Study</u>. *International Journal of Environmental Research and Public Health.* 14(7): 670
- Bonetta, S., Pignata, C., Bonetta, S., Meucci, L., Giacosa, D., Marino, E., Gilli, G., Carraro, E., 2017. <u>Viability of Legionella pneumophila in Water Samples:</u> <u>A Comparison of Propidium Monoazide (PMA) Treatment on Membrane Filters</u> <u>and in Liquid</u>. *International Journal of Environmental Research and Public Health.* 14(5), 467
- Bayle, S., Martinez-Arribas, B., Jarraud, S., Giannoni, P., Garrelly, L., Roig, B., Cadière, A., **2020**. <u>Development of a DGGE method to explore Legionella</u> <u>communities</u>. *Heliyon*, 6(1).

In six articles, iQ-Check Legionella methods were used with satisfaction.

There have been no external validations by another certification body

Appendix 1: Fitting to the primary standard

Results from iQ-Check[™] Quanti L. spp – Extension 2011 - v01 achieved by IPL santé, environnement durables Nord

Niveaux testés (UG/puits)	(UG/puits)	15	420	4200	42000
	log (UG/Puits)	1,17609	1,17609 2,62325 3,62325 4,62325	3,62325	4,62325
C(t) obtenus	Gamme étalon 1	35,27	31,28	28,26	24,99
		34,85	31,37	28,18	25,00
	Gamme étalon 2	35,09	31,26	28,43	25,02
		35,01	31,31	28,29	24,97
52	Gamme étalon 3	35,03	31,55	28,63	25,31
		35,07	31,57	28,35	25,12
Pente			-2,8	-2,891	
Ordonnée à l'origine	igine		38,	38,674	
Corrélation (r ²)			0,9	0,995	
Efficacité (%)			121	121,752	

Raccordement de la solution calibrante

Solution calibrante

Niveaux estimé (UG/puits)	é (UG/puits)	19	390	3900	39000
	log (UG/Puits)	1,27875	1,27875 2,59106 3,59106 4,59106	3,59106	4,59106
C(t) obtenus	Gamme calib 1	35,12	32,12	29,06	25,95
		35,06	32,09	29,09	26,12
	Gamme calib 2	34,98	32,02	28,87	25,86
		35,05	32,12	29,04	25,66
	Gamme calib 3	35,18	32,02	28,95	25,84
		35,01	31,92	28,8	25,76
C(t) moyen par niveau	r niveau	35,07	32,05	28,97	25,87
Quantité retroi	Quantité retrouvée par niveau (Lé	1,25	2,29	3,36	4,43
Erreur de calibr par niveau	r par niveau	0,03	0,30	0,23	0,16
	moyenne		0,18	18	
Vérification de	Vérification de l'équivalence des p		0,13	13	

Raccordement du matériau de référence

Matériau de référence

Valeur de référ (UG/puits)	240
log (UG/Puits)	2,73239
C(t) obtenus MR1	31,34
MR2	31,31
C(t) moyen	31,33
Quantité retrouvée par niveau (Log	og) 2,54
Erreur de calibrage	0'19

Raccordement sur CFX Gamme de référence

Gamme de référence

Raccordement sur Chromo 4

Niveaux testés (UG/puits)	(UG/puits)	15	420		4200 42000
	log (UG/Puits)	1,17609	1,17609 2,62325 3,62325 4,62325	3,62325	4,62325
C(t) obtenus	Gamme étalon 1	35,42	31,17	27,62	24,14
		35,34	30,90	27,55	24,31
	Gamme étalon 2	35,33	30,83	27,54	24,47
		35,28	30,79	27,52	24,13
	Gamme étalon 3	34,85	30,80	27,37	24,02
		35,02	30,64	27,57	24,10
Pente			-3,	-3,198	
Ordonnée à l'origine	rigine		39,	39,076	
Corrélation (r ²)			5'0	0,998	
Efficacité (%)			105	105,466	

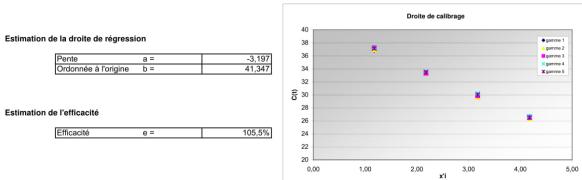
Raccordement de la solution calibrante

Solution calibrante

Niveaux estimé (UG/puits)	é (UG/puits)	19	390	3900	39000
	log (UG/Puits)	1,27875	2,59106	1,27875 2,59106 3,59106 4,59106	4,59106
C(t) obtenus	Gamme calib 1	35,52	31,88	28,10	24,72
		35,29	31,38	27,96	24,70
	Gamme calib 2	34,99	31,34	28,03	24,52
		35,69	31,49	28,09	24,63
	Gamme calib 3	35,00	31,32	27,96	24,67
		34,86	31,25	28,17	24,54
C(t) moyen par niveau	r niveau	35,23	31,44	28,05	24,63
Quantité retrou	Quantité retrouvée par niveau (Lo	1,20	2,39	3,45	4,52
Erreur de calibr par niveau	r par niveau	0,07	0,20	0,14	0,07
	moyenne		0	0,12	
Vérification de	Vérification de l'équivalence des		0	0,00	

Raccordement du matériau de référence

Matériau de référence


Valeur de référ (UG/puits	rr (UG/puits)	240
	log (UG/Puits)	2,73239
C(t) obtenus	MR1	30,93
	MR2	30,99
C(t) moyen		30'96
Quantité retrou	uantité retrouvée par niveau (Log)	og) 2,54
Erreur de calibrage	orage	0,19

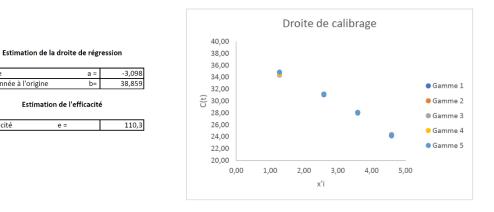
Appendix 2: Calibration function

Results from iQ-Check[™] Quanti L. spp – Extension 2011 - v01 achieved by IPL santé, environnement durables Nord

Niveau (UG/puits)	Xi	19	390	3900	39000	19	390	3900	39000
	$x'_i = Log(x_i)$	1,28	2,59	3,59	4,59	1,28	2,59	3,59	4,59
gamme	gamme 1	37,08	33,33	29,60	26,49				
Yij		36,49	33,27	29,84	26,72	36,79	33,30	29,72	26,61
	gamme 2	37,02	33,18	29,44	26,36				
k=5 répétitions		36,77	33,33	29,71	26,24	36,90	33,26	29,58	26,30
	gamme 3	37,78	33,30	29,69	26,54				
		36,69	33,31	29,99	26,46	37,24	33,31	29,84	26,50
	gamme 4	37,32	33,81	30,14	26,65				
		37,16	33,32	30,32	26,84	37,24	33,57	30,23	26,75
	gamme 5	37,40	33,57	30,01	26,52				
		36,90	33,41	30,05	26,50	37,15	33,49	30,03	26,51
Moyenne	m	37,06	33,38	29,88	26,53	37,06	33,38	29,88	26,53

Vérification des performances de la régression linéaire

Niveau	xi	19	390	3900	39000	19	390	3900	39000
	$x'_i = Log(x_i)$	1,28	2,59	3,59	4,59	1,28	2,59	3,59	4,59
gamme	gamme 1	1,33	2,51	3,67	4,65				
y _{ij}	gamme	1,52	2,53	3,60	4,57	1,43	2,52	3,64	4,61
	gamme 2	1,35	2,55	3,72	4,69				
k=5 répétitions		1,43	2,51	3,64	4,73	1,39	2,53	3,68	4,71
	gamme 3	1,12	2,52	3,65	4,63				
		1,46	2,51	3,55	4,66	1,29	2,52	3,60	4,64
	gamme 4	1,26	2,36	3,51	4,60				
		1,31	2,51	3,45	4,54	1,28	2,43	3,48	4,57
	gamme 5	1,23	2,43	3,55	4,64				
		1,39	2,48	3,53	4,64	1,31	2,46	3,54	4,64
Moyenne	mi	1,34	2,49	3,59	4,63	1,34	2,49	3,59	4,63


Biais		0,06	-0,10	0,00	0,04
Ecart type	S =	0,12	0,06	0,08	0,05
Exactitude de linéarité	E _{LIN} =	0,13	0,12	0,08	0,07
Incertitude de linéarité	U _{LIN} =	0,42	0,37	0,27	0,22

V0 July 2023

	_		
Results from iO_Check™	Quanti I	snn – Extension 2023	- achieved by Upscience (CFX96)
Results nonni Q-Oncor	Quanti L.	3pp - Extension 2020	

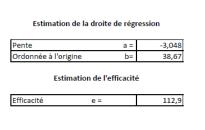
Niveeu (LIC / puite)	×i	19	390	3900	39000	19	390	3900	39000
Niveau (UG/puits)	$x'_{i} = Log(x_{i})$	1,28	2,59	3,59	4,59	1,28	2,59	3,59	4,59
gamme	Gamme 1	34,90	31,08	28,00	24,15	34,75	31,05	27,97	24,17
Yıj	Gamme I	34,59	31,03	27,93	24,19	34,73	51,05	27,37	24,17
k = 5 répétitions	Gamme 2	34,62	31,15	28,10	24,34	24.55	21.17	20.07	24.27
	Gamme 2	34,48	31,20	28,04	24,40	34,55	31,17	28,07	24,37
	Gamme 3	34,39	31,16	28,08	24,34	24.25	21.10	20.07	24.27
	Gamme 5	34,32	31,16	28,06	24,39	34,35	31,16	28,07	24,37
	Gamme 4	34,70	31,16	28,10	24,32	24.57	21.16	20.07	24.20
	Gamme 4	34,45	31,15	28,03	24,25	34,57	31,16	28,07	24,29
	Gamme 5	34,51	31,15	28,07	24,26				
	Gamme 5	35,20	31,17	28,09	24,28	34,85	31,16	28,08	24,27
Moyenne	mi	34,61	31,14	28,05	24,29	34,61	31,14	28,05	24,

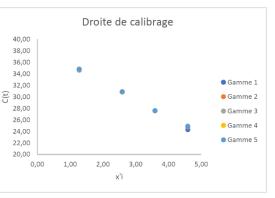
Vérification des performances de la régession linéaire

Pente Ordonnée à l'origine

Efficacité

Niveau (UG/puits)	xi	19	390	3900	39000	19	390	3900	39000
Niveau (OG/puits)	$x'_i = Log(x_i)$	1,28	2,59	3,59	4,59	1,28	2,59	3,59	4,59
gamme		1,28	2,51	3,50	4,75				
Yij	Gamme 1	1,38	2,53	3,53	4,74	1,33	2,52	3,52	4,74
k = 5 répétitions	Gamme 2	1,37	2,49	3,47	4,69	1,39	2,48	3,48	4,68
	Gamme 2	1,41	2,47	3,49	4,67	1,55	2,40	3,48	4,08
	Gamme 3	1,44	2,48	3,48	4,69	1,45	2,48	3,48	4,68
	Gamme o	1,47	2,48	3,49	4,67	1,45	2,40	3,40	4,00
	Gamme 4	1,34	2,49	3,47	4,69	4.00	2.42	2.42	4.70
	Gamme 4	1,42	2,49	3,49	4,71	1,38	2,49	3,48	4,70
	Gamme 5	1,41	2,49	3,48	4,71	1,29	2,49	3,48	4,71
	Gamine J	1,18	2,48	3,48	4,71	1,25	2,43	3,40	4,/1
Moyenne	mi	1,37	2,49	3,49	4,70	1,37	2,49	3,49	4,


Biais	0,09	0,10	0,10	0,11
Ecart type S =	0,06	0,02	0,02	0,03
Exactitude de linéarité E _{UN}	0,11	0,10	0,10	0,11
Incertitude de linéarité U _{LIN}	0,31	0,28	0,29	0,32



w wet as	xi	19	390	3900	39000
Niveau (UG/puits)	$x'_i = Log(x_i)$	1,28	2,59	3,59	4,59
gamme	Gamme 1	34,94	30,75	27,60	24,26
Yij	Gamme i	34,33	30,92	27,61	24,34
k = 5 répétitions	Gamme 2	34,80	30,80	27,59	24,78
	Gamme 2	34,84	30,97	27,57	25,03
	Gamme 3	34,48	30,88	27,56	24,80
	Gamme 5	34,88	30,89	27,56	24,91
	Gamme 4	34,95	30,80	27,56	24,74
	Gamme 4	34,76	30,85	27,60	24,84
	Gamme 5	34,60	30,93	27,62	24,82
	Gamme 5	35,00	30,86	27,59	24,86
Moyenne	mi	34,76	30,87	27,58	24,74

19	390	3900	39000
1,28	2,59	3,59	4,59
34,64	30,83	27,61	24,30
34,82	30,88	27,58	24,91
34,68	30,89	27,56	24,86
34,86	30,83	27,58	24,79
34,80	30,90	27,60	24,84
34,76	30,87	27,58	24,74

4,57

Vérification des performances de la régession linéaire

Moyenne	mi	1,28	2,56	3,64	4,57	1,28	2,56	3,64	4,5
	1	1,20	2,00	0,04	4,00	L			
	Gamme 5	1,34 1.20	2,54 2.56	3,63 3,64	4,54 4,53	1,27	2,55	3,63	4,54
		1,28	2,56	3,63	4,54	,			
	Gamme 4	1,22	2,58	3,65	4,57	1,25	2,57	3,64	4,55
	Gamme 5	1,24	2,55	3,64	4,51	1,31	2,55	3,03	4,33
	Gamme 3	1,37	2,56	3,65	4,55	1,31	2,55	2,55 3,65	4,51
-	Gainine 2 1,26	1,26	2,53	3,64	4,47	1,26	2,55	3,64	
k = 5 répétitions	Gamme 2	1,27	2,58	3,63	4,56	1.20	2.55	2.64	4.51
- Yij	Gamme 1	1,42	2,54	3,63	4,70	1,32	2,57	3,63	4,72
gamme	Commo 4	1,22	2,60	3,63	4,73	4.00	0.57	0.50	
	1 203 (11)	1,20	2,00	0,00	4,00	1,20	2,00	0,00	1,00
Niveau (UG/puits)	$\mathbf{x'}_i = \text{Log}(\mathbf{x}_i)$	1,28	2,59	3,59	4,59	1,28	2,59	3,59	4,59
	Xi	19	390	3900	39000	19	390	3900	39000

Biais	0,00	0,03	0,05	0,02
Ecart type S =	0,03	0,01	0,01	0,08
Exactitude de linéarité E _{UN}	0,03	0,03	0,05	0,08
Incertitude de linéarité U _{LIN}	0,09	0,09	0,13	0,23

Appendix 3: Limit of detection

Results from iQ-Check[™] Quanti L. spp – Extension 2011 - v01 achieved by IPL santé, environnement durables Nord

Limite de détection à 5UG

Echantillons à la concentration 5UG

Sample	C(t)	I.C. C(t)	SQ
e1	37,88	33,12	6,445
e1	37,73	33,12	7,232
e2	39,38	36,36	1,982
e2	38,41	34,8	4,257
e3	37,65	34,56	7,690
e3	38,19	34,14	5,046
e4	37,92	34,09	6,237
e4	38,12	34,01	5,328
e5	38,25	32,97	4,826
e5	37,77	33,71	7,028
e6	38,99	35,71	2,685
e6	38,34	34,12	4,496
e7	38,1	34,39	5,432
e7	38,02	34,24	5,775
e8	39,21	34,53	2,268
e8	37,86	34,21	6,526
e9	37,39	32,78	9,424
e9	37,82	33,79	6,734
e10	41,57	39,12	0,356
e10	37,97	34,42	5,989
e11	38,9	34,49	2,887
e11	38,13	34,04	5,271
e12	38,93	34,35	2,816
e12	37,85	34,08	6,557
e12	37,05	32,87	
e13			11,400
	38,08	34,53	5,489
e14	38,19	34,68	5,041
e14	38,56	34,31	3,786
e15	37,91	34,44	6,301
e15	38,43	34,93	4,193
e16	38,04	34,35	5,667
e16	37,42	34,07	9,195
e17	37,32	32,73	9,950
e17	38,47	35,11	4,058
e18	40,81	37,79	0,645
e18	38,08	34,36	5,515
e19	37,78	34,27	6,964
e19	37,9	34,15	6,307
e20	38,16	34,63	5,147
e20	39,2	34,48	2,280
e21	37,28	33,31	10,260
e21	41,82	35,38	0,293
e22	39,31	35,69	2,096
e22	35,51	33,71	7,956
e22 e23			and the second sec
	37,95	34,28	6,091
e23	38,17	34,39	5,128
e24	38,14	34,38	5,261
e24	37,92	34,65	6,214
e25	37,33	33,41	9,875
e25	37,47	33,94	8,870
e26	37,84	34,55	6,629
e26	37,97	34,48	5,997
e27	38,04	34,37	5,654
e27	37,53	34,6	8,487
e28	38,98	34,64	2,712
e28	38,15	34,36	5,218
e29	37,74	33,16	7,195
e29	41,52	39	0,372
e30	38,16	34,32	5,146
e30			4,908
830	38,22	34,72	4,908

Contrôle Gamme Standard

Content	C(t)	I.C. C(t)	SQ	
QS1	36	,02 33	3,04	19,00
QS1	36	,06 33	3,22	19,00
QS2	34	,01 3	35,6	390,00
QS2	42	26 N/A		390,00
QS3	29	,99 34	4,11	3900,00
QS3	29	,72 3	33,4	3900,00
QS4	2	6,4 33	3,75	39000,00
QS4	26	37 33	3,98	39000,00

Contrôle négatif

Content	C(t)	I.C. C(t) SQ
Neg Ctrl	N/A	34,62 N/A
Neg Ctrl	N/A	34,39 N/A

Appendix 4: limit of quantification

Results from iQ-Check[™] Quanti L. spp – Extension 2011 - v01 achieved by IPL santé, environnement durables Nord

Limite de quantification LQ à 15UG

Gamme de calibrage QS

	UG/puits	Moy Log (UG/puits)	C(t)
QS1		1,278753601	36,87
	19	1,278753601	37,23
QS2		2,591064607	33,65
	390	2,591064607	33,71
QS3		3,591064607	29,73
	3900	3,591064607	29,87
QS4		4,591064607	26,41
	39000	4,591064607	26,51

Pente	-3,241
Ordonnée origine	41,514
Corrélation (r ²)	0,992
Efficacité (%)	103,474

LQ_{PCR} à 15UG : 30 mesures en réplicat

	C(1	:)		UG/p	uits	
	Réplicat	Moyenne	UG/puits I	Moy UG/puits	x' (Log)	Moyenne a
LQ-1	37,55		16,7		1,223	
	37,87	37,71	13,4	1,50E+01	1,124	1,173
LQ-2	37,57		16,5		1,217	
	37,27	37,42	20,4	1,84E+01	1,309	1,263
LQ-3	37,17		22,0		1,340	
	37,08	37,13	23,3	2,26E+01	1,368	1,354
LQ-4	37,21	5	21,4		1,328	
	37,49	37,35	17,5	1,94E+01	1,241	1,285
LQ-5	37,53		17,0		1,229	
	37,63	37,58	15,8	1,64E+01	1,198	1,214
LQ-6	37,73	5.27925	14,7		1,167	
	37,21	37,47	21,3	1,80E+01	1,328	1,248
LQ-7	36,83		27,9		1,445	
	37,00	36,91	24,8	2,63E+01	1,393	1,419
LQ-8	37,07		23,5		1,371	
	37,21	37,14	21,3	2,24E+01	1,328	1,349
LQ-9	37,73		14,8		1,167	
	37,68	37,7	15,2	1,50E+01	1,183	1,175
LQ-10	37,82		13,8	1015.01	1,140	
LQ-11	38,15	37,99	11,0	1,24E+01	1,038	1,089
LQ-11	37,25	07.17		0.405.04	1,315	
0.40	37,09	37,17	23,1	2,19E+01	1,365	1,340
LQ-12	36,54 37,06	36.8	34,4 23.7	0.045.04	1,534	
LQ-13	37,06	36,8	23,7	2,91E+01	1,374	1,454
LQ-13		07.04	20,5	4.005.04	1,285	1 000
LQ-14	37,26 37,56	37,31	20,5	1,99E+01	1,312	1,298
LQ-14	37,56	07.57		4.005.04	1,220	1,218
LQ-15	37,57	37,57	16,4	1,66E+01	1,217	1,218
LQ-15		27.07		2.075+01		1 200
LQ-16	37,04	37,27	24,0	2,07E+01	1,380	1,309
LQ-16	36,48 37,37	36,93	19,0	2,73E+01	1,553 1,278	1,416
LQ-17	37,13	30,93	22,5	2,732+01	1,278	1,410
LQ-17	37,13	37,28	18,3	2,04E+01	1,352	1,306
LQ-18	37,45	31,20	18,7	2,046+01	1,200	1,300
LQ-10	37,65	37,52	15,6	1,72E+01	1,192	1,232
LQ-19	36,69	37,32	30,8	1,722701	1,488	1,232
LQ=15	37,00	36.85	24.7	2,77E+01	1,468	1,440
LQ-20	36,57	30,03	33.5	2,772+01	1,525	1,440
LQ-20	37,13	36,85	22.5	2.80E+01	1,352	1,439
LQ-21	37,70	30,03	15.0	2,002+01	1,332	1,435
LGLI	37,18	37,44	21.8	1,84E+01	1,337	1,257
LQ-22	37.75	01,44	14.5	1,042.01	1,161	1,201
LQ-22	37,68	37,72	15,2	1,49E+01	1,183	1,172
LQ-23	37,00	51,12	20.2	1,452.01	1,303	1,172
LQ-25	37,25	37,27	20,2	2,04E+01	1,315	1,309
LQ-24	37.00	01,21	24,7	2,042.01	1,393	1,000
	36,94	36,97	25.8	2,52E+01	1,411	1,402
LQ-25	37.29	00,01	20,1	LIGHT	1,303	1,102
=-	37,62	37,46	15,9	1,80E+01	1,201	1,252
LQ-26	37,55		16,7		1,223	
	36,63	37,09	32,1	2,44E+01	1,507	1,365
LQ-27	36,54		34,3		1,534	.1000
1.728	37,02	36,78	24,4	2,94E+01	1,386	1,460
LQ-28	36.83		28.0		1,445	.,
	36,99	36,91	24,9	2,64E+01	1,396	1,420
LQ-29	37,58	,	16,4		1,214	.,
1.00	37,15	37,37	22.3	1,93E+01	1,346	1,280
LQ-30	37,12		22.8		1,356	.,200
	37,34	37.23	19.5	2.11E+01	1,288	1,322

Moyenne x'	1,309
Ecart-type s	0,097
Biais	0,030
Exactitude de LQ ELQ	0,101
Incertitude ULO	0,207

V0 July 2023

Appendix 5: Yield and robustness

Results from iQ-Check™ Quanti L. spp – Extension 2011 - v01 achieved by IPL santé, environnement durables Nord

	Protocole A	Protocole Aquadien W2							
	Echantillon	du de	page		Rés	Résultat analyse		Rendement	nent
37%	EC2N1W	0G/puits 2,32E+04	A (log) 6,57	25,79 25,79 25,69	3,27E+04 3,53E+04	3,40E+04	6,09	-0,48	33%
33%	EC2N1W	2,32E+04	6,57	25,88 25,97	3,03E+04 2.83E+04	2,93E+04	6,02	-0,55	28%
39%	EC3N1W	4,31E+02	4,84	30,3 30,32	6,48E+02 6,40E+02	6,44E+02	4,37	-0,47	34%
<u> </u>	EC4N1W	4,31E+02	4,84	30,16 30,22	7,22E+02 6,89E+02	7,05E+02	4,40	-0,43	37%
<u> </u>	E5N1W-100	3,27E+04	6,72	30,53 30,57	7,23E+02 7,02E+02	7,12E+02	6,41	-0,38	41%
63%	E6N1W-100	3,27E+04	6,72	30,4 30,36	8,00E+02 8,29E+02	8,14E+02	6,47	-0,33	47%
30%	E7N1W-100	3,27E+04	6,72	30,38 30,31	8,17E+02 8,58E+02	8,37E+02	6,48	-0,31	48%
31%	EC8N1W	7,10E+03	6,06	26,87 26,74	9,45E+03 1.04E+04	9,92E+03	5,55	-0,50	31%
31%	E9N1W	7,00E+04	7,05	23,82 23,89	9,00E+04 8.51E+04	8,75E+04	6,50	-0,55	28%
<u> </u>	E10N1W	7,00E+04	7,05	23,57 23,63	1,08E+05 1,03E+05	1,06E+05	6,5804756	-0,47	34%
41%			Re	endement m	oyen pour le	Rendement moyen pour le niveau 100 000 UG/L		-0,45	36%
	Echantillon	Valeur du dopage UG/puits A (loc	A (log)	C(t)	Rés UG/puits	Résultat analyse s Moyenne UG/puits	B (log)	Rendement log %	nent %
79%	EC1N2W	6,55E+02	5,02	34,5 35,3	3,21E+01 1,78E+01	3,21E+01	5,06	0,04	110%
87%	EC2N2W	6,55E+02	5,02	34,74 35,01	2,68E+01 2,20E+01	2,43E+01	4,94	-0,08	83%
53%	EC3N2W	6,28E+02	5,00	34,97 36,8	2,10E+01 5,51E+00	2,10E+01	4,88	-0,12	75%
58%	EC4N2W	6,28E+02	5,00	34,74 35,97	2,46E+01 1,01E+01	2,46E+01	4,95	-0,05	88%
57%	EC5N2W	2,32E+04	6,57	31,16 31,05	4,39E+02 4,79E+02	4,58E+02	6,22	-0,35	45%
46%	EC6N2W	2,32E+04	6,57	30,97 31,21	5,09E+02 4,19E+02	4,62E+02	6,22	-0,35	45%
49%	EC7N2W	4,31E+02	4,84	34,78 35.52	2,09E+01 1.18E+01	2,09E+01	4,88	0,04	109%

EC1N1	8	A (log)	C(t)	12	Résultat analyse s Moyenne UG/puits	B (log)	Rendement log %	ment %
		5,02	29,43 29,67		1,20E+03	4,59	-0,44	37%
EC2N1	6,55E+02	5,02	29,7 29.73	1,08E+03 1.06E+03	1,07E+03	4,53	-0,49	33%
EC3N1	6,28E+02	5,00	29,41	1,19E+03 1,25E+03	1,22E+03	4,59	-0,41	39%
EC4N1	6,28E+02	5,00	29,32 29,31	1,27E+03 1,29E+03	1,28E+03	4,61	-0,39	41%
EC5N1	4,31E+02	4,84	29,24 29,5	1,46E+03 1,20E+03	1,32E+03	4,63	-0,21	61%
EC6N1	4,31E+02	4,84	29,31 29,38	1,39E+03 1,31E+03	1,35E+03	4,64	-0,20	63%
E7N1-100	3,27E+04	6,72	31 30,59	5,01E+02 6,91E+02	5,89E+02	6,27	-0,52	30%
E8N1-100	3,27E+04	6,72	30,88 30,62	5,52E+02 6,78E+02	6,12E+02	6,29	-0,50	31%
E9N1-100	3,27E+04	6,72	30,8 30,7	5,89E+02 6,32E+02	6,10E+02	6,29	-0,50	31%
EC10N1	7,10E+03	6,06	25,8 25,66	2,11E+04 2,34E+04	2,22E+04	5,85	-0,20	63%
Echantillon	8	A (loc)	Ę	12	Résultat analyse Movement I Gruite	(oot) a	Rendement	ment 20
EC1N2	2,32E+04	6,57	30,25		9,17E+02	6,47	-0,10	%62
EC2N2	2,32E+04	6,57	30,13	1,00E+03	1,00E+03	6,51	-0,06	87%
EC3N2	4,04E+04	6,81	30,24	8,24E+02 9,53E+02	8,86E+02	6,45	-0,28	53%
EC4N2	4,04E+04	6,81	30,08 29,96	9,29E+02 1,02E+03	9,74E+02	6,49	-0,23	58%
EC5N2	4,04E+04	6,81	30,12 29,98	9,00E+02 1,01E+03	9,54E+02	6,48	-0,24	57%
EC6N2	3,27E+04	6,72	30,29 30,21	8,76E+02 9,28E+02	9,02E+02	6,46	-0,33	46%
EC7N2	3,27E+04	6,72	30,24 30,1	9,07E+02 1,01E+03	9,58E+02	6,49	-0,31	49%
EC8N2	7,10E+03	6,06	31,82 32.06	2,28E+02 1.91E+02	2,09E+02	5,82	-0,23	26%
EC9N2	7,21E+04	2,06	30,05 30,09	1,07E+03 1,04E+03	1,05E+03	6,53	-0,53	29%
EC10N2	7,21E+04	7,06	30,38 30,15	8,41E+02 9,95E+02	9,15E+02	6,47	-0,60	25%
		Ľ.	Rendement	moyen pour le	Rendement moyen pour le niveau 1 000 UG/L		-0,29	51%

Robustesse Eau Chaude Sanitaire

Protoc

Niveau N1 100 000 UG/L

Niveau N2 1 000 UG/L

50%

-0,30

noyen Eau

46%

-0,34

chaude Eau

%69

-0,16

eau 1 000 UG/L

108% 62% 27%

0,03 -0,21 -0,56

4,87 5,85 6,48

2,07E+01 1,96E+02 9,54E+02

4,31E+02 7,10E+03 7,00E+0

> C9N2W 10N2W

AFNOR	Validation	by	AFNOF
Certificat	ion		
Summary	y report		
iQ-Check	k™ Legione	ella s	spp.
Certificat Summary	ion y report		

Niveau N1 100 000 UG/L

Niveau N2 1 000 UG/L

30

Robustesse Tour Aéroréfrigérante

Protocole Aquadien

	Valeur UG/puits	6,55E+	2,32E+
	Echantillon	T1N1W	T2N1W
62			
	ndement %	37%	41%

Echontillon	Valeur du dopage	dopage		Rés	Résultat analyse		Rendement	ement
CCDBINITION	UG/puits	A (log)	C(t)	UG/puits	Moyenne UG/puits	B (log)	log	%
T1N1	2,32E+04	6,57	25,53	4,01E+04	A 31E404	6 14	0.42	70/2
	2	4	25,35	4,64E+04	4,010104	0,14	-0,43	0/ 10
F2N1	2,32E+04	6,57	25,39	4,52E+04	A 765 .04	0 10	000	440/
2			25,26	5,00E+04	4', JETU4	0,10	PC'0-	4170
T3N1	4,04E+04	6,81	23,7	1,45E+05	1 525105	0 0	100	040/
			23,57	1,61E+05	1,335703	0,03	to'n-	21.70
T4N1	4,04E+04	6,81	23,64	1,52E+05	1 551.05	0 10	000	/000
			23,58	1,59E+05	1,005700	0,10	cn'n-	80.70
T5N1	4,04E+04	6,81	23,6	1,57E+05	4 70E 10E	2 7E	000	1050/
		6	23,3	1,98E+05	1,105-103	0,13	20'0	% 601
T6N1-100	3.27E+04	6,72	31,02	4,95E+02	2001-000	000	070	1000
			30,81	5,80E+02	2,305702	0,23	-0,43	0/.70
7N1-100	3,27E+04	6,72	31,06	4,78E+02	C OVETUO	66.2	0 20	/000
			30,78	5,95E+02	0,046702	0,23	nc'n-	0/.70
T8N1-100	3.27E+04	6,72	31,09	4,68E+02	C 175.00	000	0 50	240/
			30,79	5,93E+02	3,21 5702	0,23	nc'n-	0/10
T9N1	7,10E+03	6,06	26,26	1,49E+04	4 EOF TOA	E 70	36.0	A E 0/
			26,1	1,68E+04	1,005+04	0//0	cc'n-	0/.04
T10N1	7,21E+04	7,06	23,41	1,46E+05	1 AAETOE	2 20	0.40	1007
ŝ			34 00	1 475-405	1,440100	00'0	-0,40	40./0

Rendement moyen pour le niveau 100 000 UG/L -0,31 49%	
nt moyen pour le niveau 100 000 UG/L	49%
nt moyen pour le niveau	-0,31
Render	nt moyen pour le niveau
	Renc

34%

-0,47

Rendement moyen pour le niveau 100 000 UG/L

Γ	%	82%		000	2	70501	0/0	010/	2	200/	0	C 4 0/	2	10001	2	010/	2	/000	0/10	000	2
Rendement	0,	82		00	ŏ	101	2	6	ō		5	ŭ	ñ	101	2	6	ä	6	20	aa	00
Ren	log	-0.09		0.05	co'n-	100	n'n	000	20'02	0.24	0,0-	00.0	-0,43	100	50	100	to'o-	0000	nn'n	90.0	2010-
┢	(6	_									_		_		_		_		_		_
	B (log)	4.93		1 07	4,41	5.04	0,0	104	4	20 2	0,20	00 0	0,40	0 70	0.10	000	20'0	0 10	0,13	8 00	5
Résultat analyse	Moyenne UG/puits	2.67E+01		2 80ETU1	2,036701	2 27ETU1	3,225701	2 EE 104	2,000701	E 73E103	0,105-02	C OVETOD	3,305-02	1 615403	1,015-000	4 201-102	1,306703	1 001.04	1,000-101	3 126103	3, 125702
Résult	UG/puits N	2,72E+01	2,62E+01	3,01E+01	2,77E+01	3,27E+01	3,18E+01	2,13E+01	3,04E+01	5,56E+02	5,91E+02	5,64E+02	6,18E+02	1,59E+03	1,64E+03	1,56E+03	1,18E+03	N/A	1,66E+01	3,01E+02	S 24E+02
	C(t)		34,77	34,58	34,7	34,36	34,39	34,94	34,45	30,86	30,78	30,84	30,73	29,4	29,37	29,43	29,78		35,35		31 35
page	A (log)	5,02		5,02		5,00		5,00		6,57		6,57		6,81		6,81		6,72 N/A		6,06	0
Valeur du dopage	UG/puits	6,55E+02		6,55E+02		6,28E+02		6,28E+02		2,32E+04		2,32E+04		4,04E+04		4,04E+04		3,27E+04		7,10E+03	
	Echanulon	T1N2		T2N2		T3N2		T4N2		T5N2		T6N2		T7N2		T8N2		T9N2-100		T10N2	

63% -0,20

Rendement moyen Tour aéroréfrigérante Aquadien

82%

-0,09

Rendement moyen pour le niveau 1 000 UG/L

35%

-0,46

Rendement moyen Tour aéroréfrigérante Aquadien W2

36%

-0,45

Rendement moyen pour le niveau 1 000 UG/L

Protocole Aquadien W2

Cataatillaa	Valeur du dopage	lopage		Rés	Résultat analyse		Rendement	ment
ECRAMMION	UG/puits	A (log)	C(t)	UG/puits	Moyenne UG/puits	B (log)	log	%
T1N1W	6,55E+02	5,02	29,71	1,08E+03	4 076 100	A EO	0.4.0	1070
	5	ŝ	29,72	1,07E+03	1,07 5703	4,00	C+'0-	0/ 10
T2N1W	2,32E+04	6,57	26,11	2,52E+04	2 645404	5 06	0.61	76.0/
		1	26,1	2,55E+04	to-1+0'7	0,20	10'0-	0/ 07
T3N1W	4,31E+02	4,84	30,35	6,26E+02	6 40ET00	N 2.4	0 50	/000
			30,41	5,95E+02	0, 105-702	4,0,4	nc'n-	0/ 70
T4N1W	4,31E+02	4,84	30,26	6,68E+02	0 E0F 100	4 97	24.0	1010
			30,33	6,33E+02	0,3017402	4,01	-0,47	2.50
T5N1W	4,04E+04	6,81	24,96	5,35E+04	E JOE TOA	00 0	0 AE)02C
	~	ŝ	25	5,17E+04	2,205-104	07'0	C+'0-	0/ 00
T6N1W	4,04E+04	6,81	25,24	4,27E+04	4 645 104	000	0.64	1010
ž.			25,03	5,04E+04	4,045104	27'0	10'0-	0/10
7N1W	4,04E+04	6,81	25,16	4,57E+04	A 766404	6 73	O EO	/000
			25,06	4,95E+04	41,00-104	0,23	nc'n-	0/ 70
T8N1W-100	3.27E+04	6,72	31,47	3,47E+02	0 001 100	0 40	0.04	0E0/
			31,32	3,90E+02	3,000-102	0,12	10'0-	0/.07
T9N1W	7,10E+03	6,06	26,14	1,63E+04	4 776 404	2 00	30.0	200/
	~	8	25,92	1,92E+04	1,1 1 1 104	00'0	cz'n-	o/ 00
T10N1W	7,00E+04	7,05	23,3	1,32E+05	1 276 406	8 66	0.00	440/
		2	10 44	1 225106	1,21 5 100	000	0,00	21+

Cobootilloo	Valeur du dopage	opage		Rés	Résultat analyse		Rendement	ment
CIAMMON	UG/puits	A (log)	C(t)	UG/puits	Moyenne UG/puits	B (log)	log	%
1N2W	2,32E+04	6,57	31,53	3,24E+02	00411.00	000	0.55	/000
			31,8	2,62E+02	2,315702	20'0	cc'n-	0/.07
-2N2W	2,32E+04	6,57	31,71	2,81E+02	0 000 100	0.04	0.63	/000
	~	8	31,53	3,24E+02	2'UZETUZ	40'0	cc'n-	0/.67
3N2W	4,31E+02	4,84	34,8	2,06E+01	2 DOF 101	4 07	000	10001
			35,64	1,08E+01	2,005-01	4,07	cn'n	0/.001
4N2W	4,04E+04	6,81	30,74	5,51E+02	E ODELOD	5 24	0.50	/000
			30,98	4,58E+02	2'UZE+UZ	17'0	7C'0-	20%
T5N2W	4,04E+04	6,81	30,8	5,27E+02	4 005 100	0.00	0 50	/000
			30,97	4,60E+02	4,305702	0,20	cc'n-	0/.67
T6N2W	4,04E+04	6,81	30,9	4,86E+02	1 775 .00	0.40		1000
	5	8	30,95	4,69E+02	4,115702	0,10	+n'n-	0/ 67
7N2W	7,10E+03	6,06	31,76	2,39E+02	0 401-00	5 00	010	000
1			32,03	1,95E+02	2,105702	0,03	-0,10	0/ 00
T8N2W	7,21E+04	7,06	30,45	7,96E+02	0 105100	C 47	0.6.0	750/
			30,4	8,28E+02	0, 125702	0,47	nn'n-	0/ 07
F9N2W	7,00E+04	7,05	30,29	7,46E+02	0 276403	C 47	0.50	70/0
			30,01	9,17E+02	0,21 5.02	1+'0	0000-	0/17
F10N2W	7,00E+04	7,05	30,01	9,18E+02	1 045103	C 57	0 40	1000
	23	j.	29.68	1 18F+03	1,045703	10'0	0+'0-	0/ 00

AFNOR Validation by AFNOR Certification Summary report iQ-Check™ *Legionella* spp.

Niveau N1 100 000 UG/L

	V0
Jly	2023

Robustesse Eau Minérale

Protocole Aquadien

Tabaadillaa	Valeur du dopage	lopage		Rés	Résultat analyse		Rendement	ament
ECHANNION	UG/puits	A (log)	C(t)	UG/puits	Moyenne UG/puits	B (log)	log	%
M1N1	6,55E+02	5,02	29,61	1,15E+03	4 445 400	4 60	0.40	1020
			29,65	1,12E+03	1,145103	4,30	-0,40	%.CC
M2N1	6,55E+02	5,02	29,37	1,37E+03	1 22510	4 62	000	440/
			29,47	1,28E+03	1,335703	4,03	ac'n-	41%
M3N1	6,28E+02	5,00	29,38	1,22E+03	1 205-102	1 67	000	440/
			29,22	1,37E+03	1,235703	4,02	ac'n-	4 /0
M4N1	6,28E+02	5,00	29,29	1,30E+03	1 205103	4 6.4	36.0	140/
			29,14	1,46E+03	1,305-103	t0,t	000-0-	0/ +++
M5N1	2,32E+04	6,57	25,71	3,48E+04	2 EPT - 04	000	0.64	140/
			25,65	3,65E+04	3,305+04	o'no	10'0-	0/10
M6N1	2,32E+04	6,57	25,74	3,41E+04	0 EEL 104	0 00	0.64	140
0			25,64	3,70E+04	2,00E+U4	on'o	10'0-	0/10
M7N1	4,31E+02	4,84	29,59	1,12E+03	1 005100	1 54	00.0	E 40/
			29,65	1,07E+03	1,035703	4°.4	R7'0-	0/10
M8N1	4,31E+02	4,84	29,32	1,37E+03	4 776 +03	4 64	0.00	1002
			29,54	1,17E+03	1,215703	- D'+	cz'n-	0/ 80
M9N1	4,04E+04	6,81	25,02	5,11E+04	E ADETON	10 2	0 40	1000
			24,87	5,76E+04	0,42ET04	0,24	-0,43	0/.70
M10N1	4,04E+04	6,81	25,17	4,52E+04	E ODE TOA	10 2	0 ED	/000
			70 AC	E 72ELOA	2,035104	17'0	20.0-	0/ DC

Rendement moyen pour le niveau 100 000 UG/L

Niveau N2 1 000 UG/L

38%

-0,42

Cohontillon	Valeur du dopage	dopage		Rés	Résultat analyse		Rendement	ment
ECHAMBION	UG/puits	A (log)	C(t)	UG/puits	Moyenne UG/puits	B (log)	log	%
M1N2	6,55E+02	5,02	33,66	5,91E+01	A NOF 101	5 10	010	1050/
			34,66	2,84E+01	4,035.01	0, IZ	6	0/071
M2N2	6,55E+02	5,02	34,2	3,99E+01	2 205-101	5 0.0	000	1010/
		5	34,72	2,72E+01	0,285701	20,6	nn'n	% I ∩ I
M3N2	6,28E+02	5,00	34,05	4,08E+01	A 2AE-LOA	5 14	114	1200/
			33,88	4,62E+01	10+3+C'+	t ő	± 5	0/ 001
M4N2	2,32E+04	6,57	31,09	4,64E+02	4 661.00	0 17	0.40	1004
			31,08	4,66E+02	4,005702	0,17	-0'+0	40./0
M5N2	2,32E+04	6,57	31,13	4,49E+02	A 74ELDO	a 10	0.30	A 10/
			31,01	4,94E+02	4,7 ILTUE	0, 10	60°0-	0/1+
M6N2	4,04E+04	6,81	29,85	1,12E+03	4 426 402	0 20	0 47	200/
			29,82	1,15E+03	1,135703	00'0	- "	0/ 00
M7N2	4,04E+04	6,81	29,81	1,15E+03	4 446403	C EC	0 47	200/
			29,85	1,12E+03	1,145+03	00'0	-0'-1	00 /0
M8N2	7,10E+03	6,06	32,53	1,34E+02	1 206-102	5 60	0.44	1026
			32,61	1,26E+02	1,305702	70'0	+++'O-	0/ 10
M9N2	7,21E+04	7,06	30,22	9,47E+02	0 565403	6 40	0 50	70/
			30,19	9,65E+02	3,000-102	0,40	00.0-	0/17
M10N2	7,00E+04	7,05	30,12	8,46E+02	0 505 402	6 11	0.64	JE0/
		2	30,08	8,71E+02	0,035,02	t+ 'o	10'0-	0/07

Protocole Aquadien W2

Résultat analyse UG/puits Movenne UG/puits B (log) log %	7,73E+02 7,55E+02 4,43 -0,59 26%	1,13E+03 8,40E+02 4,48 -0,54 29%	8,42E+02 8,99E+02 4,51 -0,49 32% 9,60E+02	9,43E+02 9,16E+02 4,52 -0,48 33% 8,89E+02	8,09E+02 8,01E+02 4,46 -0,38 42% 7,92E+02 8,01E+02 4,46	8,24E+02 8,20E+02 4,47 -0,37 43% 8,16E+02	1,92E+03 1,05E+03 6,58 -0,22 61% 5,73E+02	6,08E+02 6,23E+02 6,35 -0,44 36%	1,09E+04 113E+04 5.61 -0.45 36%
30,16	30,22	29,64 30,04	29,89 29,71	29,74 29,82	30,01 30,04	29,99 30	29,29 30,83 5	30,76 30,69	26,68
UG/puits A (log)	6,55E+02 5,02	6,55E+02 5,02	6,28E+02 5,00	6,28E+02 5,00	4,31E+02 4,84	4,31E+02 4,84	3,27E+04 6,72	3,27E+04 6,72	7,10E+03 6,06
Echantillon	M1N1W	M2N1W	M3N1W	M4N1W	M5N1W	M6N1W	M7N1W-100	M8N1W-100	M9N1W

Rendement moyen pour le niveau 100 000 UG/L

35%

-0,46

ement	%	26%	25%	34%				
Rendement	log	-0,59	-0,60	-0,47				
	B (log)	5,98	5,97	5,59				
Résultat analyse	Moyenne UG/puits	2,64E+02	2,61E+02	1,08E+02				
Rés	UG/puits	2,53E+02 2,75E+02	2,66E+02 2,56E+02	1,18E+02 9,90E+01				
	C(t)	31,84 31,74	31,78 31,83	32,7 32,93				
opage	A (log)	6,57	6,57	6,06				
Valeur du dopage	UG/puits	2,32E+04	2,32E+04	7,10E+03				
Echontillon	ECHARIUNO	M1N2W	M2N2W	M3N2W				

46%	
-0,33	

56%

-0,25

Rendement moyen pour le niveau 1 000 UG/L

28%

-0,55

Rendement moyen pour le niveau 1 000 UG/L

31%

-0,50

minérale Aquadien W2

Rendement moyen Eau

Rendement moyen Eau minéarle Aquadien

		_		_		_		_		_		_		_		_		_		_		 	
tent	*		77.6		57.5		50.1		6		64.6		60.3		49		58.9		63.1		33.9	56.4	
Rendement	aol		-0.11		-0.24		-0.3		-0.31		-0.19		-0.22		-0.31		-0.23		-0.2		-0.47	-0.26	
	B(log)		3.69		3.56		3.6		3.59		3.67		3.64		3.58		3.66		3.8		3.53	j/r	
Résultat analyse	Moyenne UG/puits		1.35E+02		1.01E+02		1.11E+02		1.07E+02		1.296+02		1.22E+02		1.06E+02		1.26E+02		1.77E+02		9.34E+01	Rendement moyen pour le niveau 1 000 UG/L	
Résu	UG/puits	1.22E+02	1.48E+02	1.03E+02	9.85E+01	1.08E+02	1.14E+02	1.03E+02	1.11E+02	1.25E+02	1.33E+02	1.24E+02	1.196+02	1.03E+02	1.08E+02	1.40€+02	1.12E+02	1.76E+02	1.78E+02	9.96E+01	9.72E+01	ment moyen	
	C(t)	32.61	32.37	32.84	32,89	32.11	32,04	32.17	32,08	32.14	32.07	32.16	32.2	31.1	32.04	31.74	32	32.34	32.32	33.06	33.22	Rende	
eBedop	A(log)		3.8		3.8		3.9		6 'E		3.86		3.86		3.89		3.89		4		4	-	
Valeur de dopage	UG/puits		3.92E+01		3.92E+01		4.95E+01		4.95E+01		4.48E+01		4.48E+01		4.89E+01		4.89E+01		6.22E+01		6.22E+01	W2 Short Protocol	
	Echantilion		1ECS1W		2ECS1W		3ECS1W		4ECS1W		SECSIW		6ECS1W		7ECS1W		BECSIW		9ECS1W		10ECS1W	2M	

Robustesse Eau chaude sanitaire

I C(N) UG/puits Movemer UG/puits Billog1 Io 27.65 5.65E+03 5.76E+03 5.32 -0.1 27.65 5.66E+03 5.85E+03 5.32 -0.1 27.65 5.66E+03 5.85E+03 5.32 -0.1 27.65 6.002E+03 5.85E+03 5.45 -0.1 27.01 7.86E+03 7.85E+03 5.45 -0.1 27.01 7.86E+03 7.85E+03 5.45 -0.1 26.63 8.71E+03 8.19E+03 5.45 -0.1 27.01 7.81E+03 8.19E+03 5.45 -0.1 27.02 5.66E+03 7.76E+03 5.45 -0.1 27.01 8.076+03 8.36E+03 5.43 -0.1 27.01 8.066+03 7.76E+03 5.43 -0.1 27.01 8.066+03 7.56E+03 5.43 -0.1 27.01 8.066+03 7.56E+03 5.43 -0.1 27.01 8.066+03 7.56E+03		Valeur di	Valeur de dopage		Résu	Résultat analyse		Rendement	ment
2.36F-(13) 5.66 5.66F-(13) 5.76F-(13) 5.67F-(13) 5.67F 6.01 6.	Echantilon	UG/puits	A(loc)	C(t)	UG/puits	Moyenne UG/puits	8()oc)	log	*
2.39F-03 5.56 2.564 5.86±03 5.76±-03 5.32 -0.26 5.5 2.39F-03 5.56 5.066+03 5.86±03 5.82±03 5.32 -0.26 5.5 2.577 5.86±03 5.86±03 5.85±03 5.45 -0.16 65 2.577±03 5.61 3.76±03 5.85±03 5.47 -0.16 65 2.577±03 5.61 3.76±03 5.85±03 5.47 -0.16 66 3.437±03 5.61 3.76±03 8.16±03 5.47 -0.16 66 3.437±03 5.71 8.36±03 5.54 -0.15 69 67 3.437±03 5.74 2.704 8.16±03 8.16±03 5.47 -0.15 69 3.435±03 5.74 2.718 6.76±03 8.36±03 5.47 -0.15 69 3.435±03 5.74 2.718 6.76±03 8.36±03 5.47 -0.15 69 3.435±03 5.74 2.718 6.76±03				27,69	5.65E+03				
2766 566F-03 582F-03 532 6.026+03 5.82F-03 5.32 0.026 55 2.076 3.01 2.81F-03 5.82F-03 5.32 -0.16 5.5 2.67F-03 5.63 2.70 2.81F-03 5.85F-03 5.45 -0.16 66. 2.67F-03 5.63 2.71E-03 8.15F-03 5.47 0.16 66. 2.67F-03 5.63 3.71E-03 8.15F-03 5.47 0.16 66. 2.67F-03 5.74 27.03 9.56F-03 9.27F-03 5.43 0.12 66. 3.43F+03 5.74 27.18 8.76F-03 5.43 -0.26 63. 3.43F+03 5.74 27.18 8.76F-03 5.43 -0.25 60. 3.13F+03 5.74 27.06 7.54F-03 7.54F-03 5.43 -0.25 62. 3.13F+03 5.71 27.01 8.06F+03 7.78F-03 5.43 -0.25 62. 3.13F+03 5.71 27	1ECS2W	2.39E+03	5.58	27.64	5.88€+03	5.76£+03	5.32	-0.26	55
2.395+03 5.56 6.026+03 5.856+03 5.32 -0.26 5.5 2.675+03 5.63 27.1 7.816+03 5.856+03 5.43 -0.16 66. 2.675+03 5.63 27.10 7.816+03 8.196+03 5.43 -0.16 66. 2.675+03 5.63 8.716+03 8.196+03 8.196+03 5.47 -0.16 66. 2.676+03 5.74 27.03 7.676+03 8.196+03 5.47 -0.16 66. 3.485+03 5.74 27.07 9.586+03 9.276+03 5.43 -0.25 60. 3.485+03 5.74 27.01 8.076+03 8.386+03 5.48 -0.26 56. 3.485+03 5.74 27.01 8.076+03 7.826+03 5.43 -0.25 56. 3.136+03 5.74 27.01 7.926+03 5.43 -0.25 56. 3.136+03 5.74 27.01 7.926+03 5.43 -0.25 56. 3.136+03				27,68	5,68E+03				
27 7.86±-03 7.85±-03 5.45 -0.18 6.1 2.675±-03 5.61 8.71±-63 7.85±-03 5.47 -0.15 69. 2.675±-03 5.61±-03 5.61±-03 8.16±-03 5.47 -0.15 69. 3.485±-03 5.74 27.03 5.67±-03 8.16±-03 5.47 -0.15 69. 3.485±-03 5.74 27.04 8.26±-03 9.27±-03 5.43 -0.25 60. 3.435±-03 5.74 27.18 8.76±-03 8.36±-03 5.43 -0.25 60. 3.435±-03 5.74 27.04 8.06€+03 8.36±-03 5.43 -0.25 60. 3.135±-03 5.74 27.04 8.06€+03 7.32€±-03 5.43 -0.25 53. 3.135±-03 5.74 27.04 3.05€+04 1.36€+04 1.027 60. 54. 3.135±-03 5.74 27.01 8.07€+03 54. -0.17 54. 3.135±-03 5.74 27.01	2ECS2W	2.39E+03	5.58	27.6	6.02E+03	5.85E+03	5.32	-0.26	5
2 2 7 3 3 5 3 3 3 5 3 3 3 4 5 3 3 3 4 5 3				27	7,896+03				
2.675+03 5.716-03 5.776-03 5.776-03 5.476 0.16 63 3.456+03 5.70 5.5676+03 8.156-03 5.47 0.16 63 3.456+03 5.74 27.07 5.566+03 9.275+03 5.52 0.22 603 3.456+03 5.74 27.08 8.066+03 8.366+03 5.48 0.25 563 3.456+03 5.74 27.08 8.066+03 7.566+03 5.45 0.25 563 3.156+03 5.7 27.01 8.066+03 7.566+03 5.45 0.25 563 3.156+03 5.7 27.01 7.566+03 7.566+03 5.43 0.27 563 3.156+04 27.01 7.566+03 7.516+03 5.43 0.27 563 3.1366+03 5.34 27.11 7.366+03 7.516+03 5.43 0.27 563 3.1366+04 1.306+04 1.306+04 1.306+04 1.076+04 5.53 0.17 574 3.1366+04<	3ECS2W	2.67E+03	5.63	27.01	7.81E+03	7.85E+03	5.45	-0.18	66.1
2.67F-03 5.63 27.03 5.67F-03 8.18F-03 5.47 0.16 63 3.43F-03 5.74 27.15 8.584-63 9.27F-03 5.22 0.15 693 3.43F-03 5.74 27.15 8.584-63 9.27F-03 5.22 0.12 603 3.43F-03 5.74 27.18 8.76F-03 9.27F-03 5.43 0.25 603 3.43F-03 5.7 27.01 8.07F-03 5.43 -0.25 563 3.13F-03 5.7 27.01 8.07F-03 5.45 -0.25 563 3.13F-03 5.7 27.01 8.07F-03 7.546-03 5.45 -0.27 5.31 3.13F-03 5.7 27.01 8.07F-04 1.30F-04 1.30F-04 5.31 -0.27 5.31 4.33F-03 5.84 27.31 1.07F-04 5.59 -0.17 5.34 4.33F-03 5.84 27.31 1.07F+04 1.07F+04 5.59 -0.17 5.34				26.88	8.71E+03				
3.43E+03 5.74 27.15 6.95E+03 5.27 0.22 60.3 3.43E+03 5.74 27.10 9.56E+03 9.27E+03 5.52 -0.26 60.3 3.43E+03 5.74 27.18 8.06E+03 8.36E+03 5.48 -0.26 5.43 3.13E+03 5.7 8.75E+03 5.46 3.23 -0.25 56.3 3.13E+03 5.7 7.04E+03 7.76E+03 5.43 -0.25 56.3 3.13E+03 5.7 27.04 7.36E+03 7.76E+03 5.43 -0.27 53.3 3.13E+03 5.7 27.14 7.36E+03 7.51E+03 5.43 -0.27 53.3 4.33E+03 5.84 27.34 1.40E+04 1.30E+04 5.67 -0.17 67.4 4.33E+03 5.84 27.34 1.05E+04 1.07E+04 5.67 -0.17 67.4 4.33E+03 5.84 27.34 1.05E+04 1.07E+04 5.67 -0.17 67.4 4.33E+03	4ECS2W	2.67E+03	5.63	27.03	7.67E+03	8.196+03	5.47	-0.16	69.2
3.48F-03 5.74 27.07 9.56E+03 9.27E+03 5.52 40.22 60.3 3.48F-03 5.74 27.218 8.06E+03 5.48 -0.25 55 3.48F-03 5.74 27.38 8.06E+03 5.48 -0.25 55 3.13F+03 5.7 27.06 5.66F+03 5.48 -0.25 56 3.13F+03 5.7 27.01 5.66F+03 7.5E+03 5.43 -0.25 56 3.13F+03 5.7 27.01 5.66F+03 7.5E+03 5.43 -0.25 56 3.13E+03 5.7 27.31 7.36E+03 7.5E+03 5.43 -0.25 56 3.13E+03 5.7 27.31 7.36E+03 7.5E+03 5.43 -0.27 53 4.33E+03 5.84 1.36E+04 1.36E+04 1.36E+04 5.7 -0.17 5.14 4.33E+03 5.84 27.31 1.05E+04 1.07E+04 5.59 -0.25 56.5 4.33E+03 5.84<				27.15	8.95E+03				
348F+03 5718 0.76E+03 8.36E+03 8.36E+03 5.48 0.26 5.54 318F+03 5.7 27.01 0.016+03 3.36E+03 5.45 0.25 56.3 318F+03 5.7 27.01 0.016+03 7.36E+03 5.45 0.025 56.3 318F+03 5.7 27.01 3.016+03 7.32E+03 5.43 0.27 5.3. 318F+03 5.64 3.73E+03 7.51E+03 5.43 0.27 5.3. 4.33E+03 5.84 27.16 1.36E+04 1.30E+04 1.30E+04 5.74 5.74 5.74 4.33E+03 5.84 27.11 1.05E+04 1.30E+04 5.59 -0.17 5.43 A.33E+03 5.94 27.11 1.05E+04 1.07E+04 5.59 -0.25 56.3 A.33E+03 5.94 27.11 1.05E+04 1.07E+04 5.59 -0.25 56.3 A.33E+03 5.94 27.21 1.05E+04 1.07E+04 5.59 -0.2	SECS2W	3.43E+03	5.74	27.07	9.58€+03	9.276+03	5.52	-0.22	60.3
3.43E+03 5.74 27.28 8.00E+03 8.38E+03 5.48 -0.26 5.5 3.31E+03 5.7 27.08 7.54E+03 7.58E+03 5.48 -0.25 56.3 3.31E+03 5.7 27.06 7.54E+03 7.78E+03 5.43 -0.25 56.3 3.31E+03 5.7 27.06 7.66E+03 7.78E+03 5.43 -0.27 53.3 3.31E+03 5.7 27.11 7.36E+03 7.51E+03 5.43 -0.27 53.3 4.33E+03 5.84 27.06 7.66E+03 1.20E+04 1.30E+04 5.67 67.1 67.4 4.33E+03 5.84 27.11 1.06E+04 1.07E+04 5.59 -0.27 67.3 4.33E+03 5.84 27.21 1.06E+04 1.07E+04 5.59 -0.25 56.3 A.35E+03 5.84 27.21 1.06E+04 1.07E+04 5.59 -0.25 56.3 A.35E+03 5.84 27.21 1.06E+04 1.07E+04 <td< td=""><td></td><td></td><td></td><td>27.18</td><td>8.76E+03</td><td></td><td></td><td></td><td></td></td<>				27.18	8.76E+03				
27.08 7.54E-03 5.45 0.25 5.45 0.25 5.45 0.25 5.45 0.25 5.45 0.25 5.45 0.25 5.45 0.25 5.45 0.25 5.45 0.27 0.25 5.45 0.27 0.27 0.27 5.45 0.27 5.45 0.27 5.45 0.27 5.43 0.27 5.43 0.27 5.43 0.27 5.31 1.46 0.44 1.46 0.44 1.46 0.27 5.21 0.21 5.21 0.21 5.21 0.21 5.21 0.21 5.21 0.21 5.21 1.07 6.14 1.07 6.14 5.55 4.33 5.61 3.21 6.16 1.07 6.14 1.00 0.01 0.15 5.61 3.21 6.16 4.33 5.61 3.21 6.16 4.33 5.61 3.21 6.16 9.21 1.07 6.12 5.61 3.21 6.16 1.07 6.12 5.61 3.21 6.16 1.00	6ECS2W	3.43E+03	5.74	27.28	8.00€+03	8.38£+03	5.48	-0.26	55
3.13F-03 5.7 27.01 8.0/E-03 7.78E+03 5.45 0.0.25 5.63 3.13F+03 5.7 7.7.06 7.66E+03 7.31E+03 5.43 0.27 5.3.3 3.13F+03 5.7 7.7.16 7.36E+03 7.34E 0.27 5.3.3 4.33F+03 5.84 27.16 1.36E+04 1.30E+04 5.67 -0.17 674 4.33F+03 5.84 27.21 1.09E+04 1.00E+04 5.67 -0.17 674 4.33F+03 5.84 27.21 1.09E+04 1.07E+04 5.59 -0.25 56.3 A.33F+03 5.84 27.21 1.07E+04 1.07E+04 5.59 -0.25 56.3 Reordement moyen pour le niveru 100 000 UG/L -0.25 56.3 -0.02 56.3 -0.02 56.3				27,08	7.54E+03				
2126+03 27 06 7.666+03 2121 7.366 7.518+03 5.43 -0.27 5.31 4.338+03 5.3 1.476:04 7.518+03 5.43 -0.17 5.31 4.338+03 5.84 27.05 1.476:04 1.306=04 5.67 -0.17 67.4 4.338+03 5.84 27.31 1.056=04 1.076=04 5.69 -0.17 67.4 4.335+03 5.84 27.31 1.056=04 1.076=04 5.59 -0.15 56.1 A:336+03 5.84 27.31 1.056=04 1.076=04 5.59 -0.15 56.1 Rendement moyen pour le niveau 100 000 UG/L -0.13 -0.13 -0.13 -0.13	7ECS2W	3.13E+03	5.7	27,01	8.03E+03	7.78£+03	5.45	-0.25	56.2
3.13E+03 5.7 27.11 7.366+03 7.51E+03 5.43 -0.27 5.33 4.33E+03 5.84 27.05 1.406+04 1.306 0.17 5.71 4.33E+03 5.84 27.16 1.09E+04 1.306 0.17 5.71 4.33E+03 5.84 27.21 1.05E+04 1.07E+04 5.59 -0.25 56.7 4.33E+03 5.84 27.21 1.05E+04 1.07E+04 5.59 -0.25 56.7 Rendement moyen pour le niveau 100 000 UG/L				27,06	7,66E+03				
4.33E+03 5.6.85 1.40E+04 1.30E+04 5.67 -0.17 6.74 4.33E+03 5.64 27.21 1.09E+04 1.30E+04 5.67 -0.17 674 4.33E+03 5.64 27.21 1.09E+04 1.07E+04 5.59 -0.25 56.3 8.84 27.21 1.05E+04 1.07E+04 5.59 -0.25 56.3 8.84 27.21 1.05E+04 1.07E+04 5.59 -0.25 56.3 8.84 27.21 1.05E+04 1.07E+04 5.59 -0.25 56.3	8ECS2W	3.13E+03	5.7	27.11	7.36E+03	7.51E+03	5.43	-0.27	53.7
4.38E+03 5.84 27.05 1.20E+04 5.67 -0.17 67.4 4.38E+03 5.84 27.21 1.09E+04 1.07E+04 5.59 -0.25 56.7 4.33E+03 5.84 27.21 1.05E+04 1.07E+04 5.59 -0.25 56.7 Rendement moyen pour le niveau 100 000 UG/L -0.23 -0.25 56.7 -0.25 56.7				26.85	1.406+04				
4.33E+03 5.84 27.16 1.05E+04 1.07E+04 5.59 -0.25 56.1 Rendement moyen pour le niveau 100 000 UG/L -0.25 56.1	9ECS2W	4.33E+03	5.84	27.05	1.206+04	1.30E+04	5.67	-0.17	67.6
4.33F-03 5.84 27/21 1.0/5F-04 1.0/7F-04 5.59 -0.25 56.3 Rendement moyen pour le niveau 100 000 UG/1 -0.25				27.16	1.096+04				
00 UG/T -0.23	10ECS2W	4.33E+03	5.84	27.21	1.05E+04	1.07E+04	5.59	-0.25	56.2
00 UG/L -0.23									
200				Rende	ment moyen p	our le niveau 100 000 (1/9r	-0.23	29.4
			and a second	the second second		MPI Chart Bratand		10.0	C3 0

47.4

34

84

Channellies Valued da dopage Radializat manyae Radializat manyae Radializat manyae Radializat manyae Radializat manyae Radializat Radia Radializat Radializat Radializat Radializat Radializat Radializat Radializat Radializat Radia Radia Radia <th>_</th> <th>_</th> <th>_</th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th>_</th> <th>_</th> <th>_</th> <th></th> <th>_</th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th> </th> <th> _</th> <th>_</th> <th></th>	_	_	_				_		_	_	_		_					_		 	 _	_																
Walker de depage Raditer annique Raditer annique Noveme de lepage Ioi U(l)prish Alvec) 313 554-00 331 531	ment	8	100	1.10	40.7		35.5		44.7		43.7		51.3	513		51.3		26.9	50.1	43.8		*	77.6		63.1		45.7		41.7		41.7		513		60.3		45.7	
Valueur de dopage Rakutter analyta Volporits A(log) 33.45 6.416+01 6.356+01 6.356+01 3.30.45 6.416+01 6.356+01 6.356+01 6.356+01 6.356+01 3.30.45 6.416+01 6.356+01 8.06+01 7.866+01 6.356+01 3.31.2 3.31.2 3.7776+01 8.016+01 7.866+01 7.866+01 4.485+01 3.32.4 1.065+02 1.061+02 1.026+02 1.026+02 4.485+01 3.32.4 1.061+02 1.026+02 1.056+02 1.056+02 4.485+01 3.32.4 1.061+02 1.026+02 1.056+02 1.056+02 4.485+01 3.32.4 1.061+02 1.056+02 1.056+02 1.056+02 5.335+01 3.32 1.156+02 1.156+02 1.156+02 1.056+02 5.335+01 3.32.4 1.061+02 1.056+02 1.056+02 1.056+02 5.335+01 3.32.4 1.061+02 1.056+02 1.056+02 1.056+02 5.326+01 3.32.4 <td>Rende</td> <td>gol</td> <td>0.40</td> <td>cton-</td> <td>-0.39</td> <td></td> <td>-0.45</td> <td></td> <td>-0.35</td> <td></td> <td>-0.36</td> <td></td> <td>-0.29</td> <td>10.0</td> <td>-</td> <td>-0.29</td> <td></td> <td>-0.57</td> <td>-0.3</td> <td>-0.37</td> <td>Rende</td> <td>log</td> <td>-0.11</td> <td></td> <td>-0.2</td> <td></td> <td>-0.34</td> <td></td> <td>-0.38</td> <td></td> <td>-0.38</td> <td></td> <td>-0.29</td> <td></td> <td>-0.22</td> <td></td> <td>-0.34</td> <td></td>	Rende	gol	0.40	cton-	-0.39		-0.45		-0.35		-0.36		-0.29	10.0	-	-0.29		-0.57	-0.3	-0.37	Rende	log	-0.11		-0.2		-0.34		-0.38		-0.38		-0.29		-0.22		-0.34	
Valueur du dopage Valueur du dopage Valueur du dopage Valueur du dopage C(I) 3 3255-01 3.8 3.8 3.3 3.8 3.3 3 425-01 3.8 3.8 3.3 3.8 3.3 4 485-01 3.8 3.8 4.485-01 3.8 3.3 4 485-01 3.85 4.485-01 3.85 3.3 3.3 4 485-01 3.85 3.85 3.3 3.3 3.3 3.3 3.3 3.5 3.3 3.5 3.3 3.5 3.3 3.5<		B(log)	10.0	10.0	3.41		3.41		3.51		3.53		3.6	0.L C	41.6	3.64		3.43	3.7	IG/L		B(log)	5.47		5.38		5.4		5.36		5.36		5.45		5.48		5.36	
Valueur du dopage Valueur du dopage Valueur du dopage Valueur du dopage C(I) 3 3255-01 3.8 3.8 3.3 3.8 3.3 3 425-01 3.8 3.8 3.3 3.8 3.3 4 485-01 3.8 3.8 4.485-01 3.8 3.3 4 485-01 3.85 4.485-01 3.85 3.3 3.3 4 485-01 3.85 3.85 3.3 3.3 3.3 3.3 3.3 3.5 3.3 3.5 3.3 3.5 3.3 3.5<	tat analyse	Moyenne UG/puits	107336.9	101305.0	8.01E+01		7.98E+01		1.02E+02		1.06E+02		1.26E+02	1 476400	1.11111	1.21E+02		8.32E+01	1.576+02	pour le niveau 1 000 U	tat analyse	Moyenne UG/puits	9.14E+03		7.54E+03		7.88E+03		7.21E+03		7.12E+03		8.75E+03		8.46E+03		6.33E+03	
Valueur du dopage Valueur du dopage UG/prichs Alloed) 3325+01 3.8 3325+01 3.8 3325+01 3.8 4485+01 3.8 4485+01 3.8 4485+01 3.8 4485+01 3.8 4485+01 3.8 5335+01 3.93 5335+01 3.93 5335+01 3.93 5335+01 3.93 5335+01 3.93 5335+01 3.93 5335+01 3.93 5335+01 3.93 6 2.2 2 3.435+03 556 5.74 2 3.435+03 3.435+03 5.54 3.435+03 5.74 3.435+03 5.74 3.435+03 5.74 3.435+03 5.74 3.435+03 5.74 3.435+03 5.74 3.435+03 5.74 3.435+03 5.74	3		6.29E+01 6.41E+01	101110	7.776+01	7.47E+01	8.48E+01	1.03E+02	1.00E+02	1.03E+02	1.08E+02	1.40E+02	1.12E+02	1.18E+02 1.76E+02		1.22E+02 1.20E+02	7.29E+01	9.35E+01	1.59E+02 1.54E+02	ment moyen (Résul	UG/puits	9.24E+03 9.04E+03	7.58E+03	7.50E+03	7.62E+03	8.15E+03	7.20E+03	7.21E+03	6.90E+03	7.34E+03	3827891	8.12E+03	7.92E+03	9.00E+03	6.29E+03	6.36E+03	8.37E+03
Valeur de do UG/ph/85 3 926+01 3 926+01 4 485+01 4 485+01 5 335+01 5 335+01 5 335+01 5 335+01 5 335+01 6 225+01 6 225+01 6 225+01 6 235+01 6 235+01 8 3 435+03 3 3 435+03 3 3 435+03 3 3 435+03 5 3 5 435+03 5 3 5 435+03 5 5 5 3 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		C(t)	33.48	-	33.2	32.75	32.6	32.37	32.4	32.1	32.04	31.74	32	31.79		31.75	33.45	33.13	32.47	Rende		C(t)	27.06	27.31	27.33	27.34	27.26	27.41	27.4	27.46	27.38	27.23 8	27.13	27.03	26.88	27.29	27.28	27.5
00 8 8 8 4 4 4 4 4 4 4 4 8 8 8 4 8 8 8 4 8 8 8 4 8 8 8 4 8 8 8 4 8 8 8 8	e dopage	A(log)	00	a.c	3.8		3.86		3.86		3.89		3.89	C0 C		3.93		4	4	tocol	- dopage	A(log)	5.58		5.58		5.74		5.74		5.74		5.74		5.7		5.7	
Ethantition 1EC31 2EC51 2EC51 4EC51 5EC51 5EC51 8EC51 12EC51 12EC52 2EC52 2EC52 2EC52 2EC52 2EC52 2EC52 2EC52 2EC52 2EC53 2EC53 2EC53 2EC53 2EC53 2EC53 2EC54 2EC554 2EC54 2EC54 2EC54 2EC54 2EC554 2EC554 2	Valeur de	UG/puits	LOTALS C	101375-5	3.92E+01		4.48E+01		4.48E+01		4.89E+01		4.89E+01	107300 3	101000	5.33E+01		6.22E+01	6.22E+01	dian Short Pro	Valeur de	UG/puits	2.39E+03		2.39E+03		3.43E+03		3.43E+03		3.43E+03		3.43E+03		3.11E+04		3.11E+04	
		Echantilion	10/01	Tenat	2ECS1		3ECS1		4ECS1		5ECS1		6ECS1	TEVEL	Teres.	SECS1		9ECS1	10ECS1	Aquak		Echantilion	1ECS2		2ECS2		3ECS2		4ECS2		SECS2		6ECS2		7ECS2		SECS2	

V0 July 2023

t %	34.7	31.6	43.7	56.2	60.3	41.7	64.6	67.6	57.5	55	51.3	t %	27.7	66.1	38.01	60.3	83.2	57.5	45.7	69.2	57.5	49	62.4	56.9
Rendement log	-0.46	-0.5				-0.38			-0.24	-0.26	-0.30	Rendement log				-0.22	-0.08	-0.24			-0.24	-0.31	-0.22	-0.26
B(log)	3.34	3.3	3 53	3.64	3.75	3.59	3.55	3.57	3.76	3.74	1/9/	B(log)	5.57	5.4	5.28	5.48	5.61	5.45	5.37	5.55	5.6	5.53	.∟. NG/F	
Résultat analyse its Moyenne UG/puits	6.02E+01	5.53E+01	9.48E+01	1.21E+02	1.57E+02	1.07E+02	9.75E+01	1.04E+02	1.62E+02	1.52E+02	Rendement moyen pour le niveau 1 000 UG/L	Résultat analyse ts Movenne UG/puits	1.03E+04	6.90E+03	5.34E+03	8.37E+03	1.14E+04	7.79E+03	6.52E+03	9.93E+03	1.10E+04	9.46E+03	Rendement moyen pour le niveau 100 000 UG/L	Rendement moyen Eau chaude sanitaire FDRS Short Protocol
Résulta UG/puits N	5.85E+01 6.20E+01	5.57E+01 5.50E+01	8.76E+01 1.02E+02	1.30E+02 1.12E+02	1.52E+02 1.62E+02	1.05E+02 1.09E+02	9.89E+01 9.61E+01	1.02E+02 1.07E+02	1.69E+02 1.55E+02	1.64E+02 1.40E+02	nent moyen po	Résulta UG/puits N	4 4	7.01E+03 6.78E+03	5.20E+03 5.48E+03	8.44E+03 8.29E+03	1.09E+04 1.18E+04	7.91E+03 7.67E+03	6.46E+03 6.58E+03	9.65E+03 1.02E+04	1.09E+04 1.10E+04	9.36E+03 9.56E+03	ent moyen por	de sanitaire FD
C(t)	33.56 33.49	33.64 33.64	32.29 32.11	31.83 32	31.49 31.42	31.92 31.88	32.41 32.44	32.38 32.31	32.4 32.5	32.43 32.63	Renden	C(t)	26.93 26.91	27.41 27.45	27.52 27.46	26.95 26.97	26.54 26.45	26.92 26.95	27.15 27.13	26.69 26.62	27.17 27.15	27.36 27.33	Rendem	oyen Eau chau
dopage A(log)	3.8	3.8	3.89	3.89	3.97	3.97	3.74	3.74	4	4	이	dopage A(log)	5.58	5.58	5.7	5.7	5.69	5.69	5.71	5.71	5.84	5.84		Rendement mo
Valeur de dopage UG/puits A(log	3.92E+01	3.92E+01	4.89E+01	4.89E+01	5.82E+01	5.82E+01	3.44E+01	3.44E+01	6.22E+01	6.22E+01	FDRS Short Protocol	Valeur de dopage UG/puits A(log	2.39E+03	2.39E+03	3.11E+04	3.11E+04	3.06E+03	3.06E+03	3.21E+03	3.21E+03	4.33E+03	4.33E+03		-
Echantillon	1ECS1F	2ECS1F	3ECS1F	4ECS1F	SECS1F	6ECS1F	7ECS1F	8ECS1F	9ECS1F	10ECS1F	FDR	Echantillon	1ECS2F	2ECS2F	3ECS2F	4ECS2F	5ECS2F	6ECS2F	7ECS2F	8ECS2F	9ECS2F	10ECS2F		

	Valeur de dopage	dopage		Résul	Résultat analyse		Rendement	ment
Echantillon	UG/puits	A(log)	C(t)	UG/puits	Moyenne UG/puits	B(log)	log	8
			33.18	7.89E+01				
1EMI1W	3.92E+01	3.8	33.16	7.99E+01	7.94E+01	3.46	-0.34	45.7
			33.29	7.23E+01				
2EMI1W	3.92E+01	3.8	33.27	7.36E+01	7.30E+01	3.42	-0.38	41.7
			32.82	9.98E+01				
3EMI1W	6.43E+01	4.01	32.91	9.29E+01	9.63E+01	3.54	-0.47	33.9
			32.73	7.00E+01				
4EMI1W	6.43E+01	4.01	32.7	7.13E+01	7.07E+01	3.41	-0.6	25.1
			31.91	1.28E+02				
SEMI1W	4.95E+01	3.9	31.88	1.31E+02	1.29E+02	3.67	-0.23	58.9
			32.54	7.57E+01				
6EMI1W	4.95E+01	3.9	33.66	6.82E+01	7.20E+01	3.41	-0.49	32.4
			32.39	1.01E+02				
7EMI1W	4.48E+01	3.86	32.33	1.07E+02	1.04E+02	3.57	-0.29	51.3
			33.07	5.67E+01				
8EMI1W	4.48E+01	3.86	33.15	5.30E+01	5.48E+01	33	-0.56	27.5
			32.43	1.63E+02				
9EMI1W	6.22E+01	4	32.34	1.76E+02	1.70E+02	3.79	-0.21	61.7
			32.38	1.71E+02				
10EMI1W	6.22E+01	4	32.4	1.68E+02	1.69E+02	3.79	-0.21	61.7
3	W2 Short Protocol	0	Rende	ement moyen	Rendement moyen pour le niveau 1 000 UG/L	3/L	-0.38	44.0
	Melone de deserve				Difference and have			

Robustesse Eau minérale

S(punts Moyenne UG/punts 4.00E+03 3.99E+03 3.99E+03 2.25E+03 2.52E+03 3.50E+03 3.50E+03 3.50E+03 3.50E+03 4.05E+03 4.45E	B(log) 5.17 4.98 5.1 5.1	log -0.41 -0.53 -0.53	% 38.9 25.1 29.5 44.7
	5.17 4.98 5.1 5.1	-0.41 -0.6 -0.53 -0.35	38.9 25.1 29.5 44.7
	5.17 4.98 5.1 5.18	-0.41 -0.6 -0.53 -0.35	38.9 25.1 29.5 44.7
	4.98 5.1 5.18	-0.6 -0.53	25.1 29.5 44.7
	4.98 5.1 5.18	-0.6 -0.53	25.1 29.5 44.7
	5.1 5.18	-0.53	29.5 44.7
	5.1 5.18	-0.53	29.5
	5.18	-0.35	44.7
	5.18	-0.35	44.7
	5.25	-0.38	41.7
3.77E+03			
3.79E+03 3.78E+03	5.13	-0.5	31.6
3 9.34E+03	5.53	-0.1	79.4
3 7.34E+03	5.42	-0.21	61.7
+			
4 1.07E+04	5.59	-0.25	56.2
+			
	5.6	PC U-	5
	9.28E+03 9.41E+03 7.12E+03 7.56E+03 7.56E+03 1.05E+04 1.05E+04 1.12E+04 1.12E+04 1.11E+04 1.11E+04 1.11E+04 1.11E+04	9.34E+03 7.34E+03 1.07E+04	9.34E+03 5.53 7.34E+03 5.42 1.07E+04 5.59

	Valeur de dopage	dopage		Résu	Résultat analyse		Rendement	nent
Echantillon	UG/puits	A(log)	C(t)	UG/puits	Moyenne UG/puits	B(log)	log	%
1EMI1	3.92E+01	3.8	33.12 33.14	8.23E+01 8.13E+01	8.186+01	3.42	-0.38	41.7
			32.86	1.01E+02				
2EMI1	3.92E+01	3.8	32.83	1.04E+02	1.02E+02	3.51	-0.29	51.3
3EMI1	6.49E+01	4.02	32.57 32.53	1.22E+02 1.25E+02	1 236+02	3.6	-0.42	38
			32.78	1.03E+02				
4EMI1	6.49E+01	4.02	33.07	8.20E+01	9.23E+01	3.47	-0.55	28.2
			32.31	1.07E+02				
5EMI1	3.74E+01	3.78	32.22	1.16E+02	1.12E+02	3.55	-0.23	58.9
			33.28	4.83E+01				
6EMI1	3.74E+01	3.78	33.29	4.78E+01	4.80E+01	3.19	-0.59	25.7
			31.96	1.31E+02				
7EMI1	6.43E+01	4.01	31.89	1.39E+02	1.35E+02	3.64	-0.37	42.7
			32.2	1.08E+02				
8EMI1	6.43E+01	4.01	32.17	1.11E+02	1.10E+02	3.54	-0.47	33.9
			32.65	1.38E+02				
9EMI1	6.22E+01	4	32.5	1.54E+02	1.46E+02	3.67	-0.33	46.8
106M11	107366.3	4	32.53	1.51E+02 1.28E+02	1 406+02	3 66	-0 3E	44.7
TOPINIT	10.777.0	۲			1-101-02	-	2000-	
Aqua	Aquadien Short Protocol	tocol	Rende	ament moyen	Rendement moyen pour le niveau 1 000 UG/L	G/L	-0.40	41.2
	Valeur de dopage	dopage		Résu	Résultat analyse		Rendement	nent
Echantillon	UG/puits	A(log)	C(t)	UG/puits	Moyenne UG/puits	B(log)	log	8
			27.27	7.80E+03				
1EMI2	2.39E+03	5.58	27.34	7.38E+03	7.59E+03	5.38	-0.2	63.1
			27.34	7.42E+03				
2EMI2	2.39E+03	5.58	27.44	6.84E+03	7.13E+03	5.35	-0.22	60.3
3EMI2	2 655403	89	27.35 27.31	7.70E+03 7.97E+03	7 836+03	5.4	5C U-	0 00
				1011011				
4EMI2	2.65E+03	5.63	27.39	7.49E+03	7.40E+03	5.38	-0.25	56.2
			27.12	7.75E+03				
5EMI2	3.33E+03	5.73	27.09	7.98E+03	7.86E+03	5.4	-0.33	46.8
	001300.0	F,	26.95	8.94E+03 • AEE+03	CO. 102 0		02.0	Ĩ
DEIVILZ	0.355705	C/ .C	70.12	0.735103	0./UE1U3	ţ	c7:0-	10
7EMI2	2.67E+03	5.63	27.17	6.85E+03 7.41E+03	7.136+03	5.36	-0.27	53.7
			27.06	7 505+03				
8EMI2	2.67E+03	5.63	27.02	7.77E+03	7.63E+03	5.39	-0.24	57.4

47.1
-0.34

45.3

0.37

Rendement moyen Eau minérale W2 Short Protocol

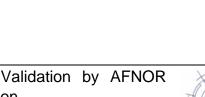
27.56 27.45 27.36 27.28

EMID

Kendement moyen tau min.

	Т				<u> </u>	Т	Т			1		Г	٦	47.7					_	_							50.5	49.1
, ent	%	39.8	35.5	42.7	, i	7.10	46.8	46.8	42.7	46.8	85.1	5	23./	47	hent	%	35.5	37.2	47.9	43.7	44.7	6	58.9	81.3	513	55	2	40
Rendement	Bol	-0.4	-0.45	-0.37		C+-0-	-0.33	-0.33	-0.37	-0.33	-0.07		17:0-	-0.34	Rendement	log	-0.45	-0.43	-0.32	-0.36	-0.35	-0.31	-0.23	60:0-	-0.29	-0.26	-0.31	-0.32
1164	p(log)	3.4	3.35	3.65		CC-C	3.45	3.45	3.64	3.68	3.93	ł	3./3	G/L		B(log)	5.13	5.15	5.31	5.27	5.38	5.42	5.4	5.54	5.55	5.58	∩6/L	
Résultat analyse	Moyenne UG/puits	6.99E+01	6.23E+01	1 23E+02	4 005-00	T-021-102	7.83E+01	7.88E+01	1.21E+02	1.34E+02	2.38E+02		1.48E+UZ	Rendement moyen pour le niveau 1 000 UG/L	Résultat analyse	Moyenne UG/puits	3.71E+03	3.94E+03	5.71E+03	5.20E+03	6.66E+03	7.40E+03	7.07E+03	9.63E+03	9.93E+03	1.07E+04	Rendement moyen pour le niveau 100 000 UG/L	Rendement moyen Eau minérale FDRS Short Protocol
13	C 175.01	0.22E+01	6.07E+01 6.39E+01	1.23E+02 1.24E+02	1.08E+02	7.01E+01	8.65E+01	7.25E+01	1.23E+02 1.20E+02	1.38E+02 1.31E+02	2.66E+02 2.10E+02	1.54E+02	70+3T+T	ment moyen	Résul	UG/puits	3.64E+03 3.78E+03	3.97E+03 3.91E+03	5.61E+03 5.80E+03	5.27E+03 5.13E+03	6.54E+03 6.77E+03	7.51E+03 7.29E+03	6.89E+03 7.24E+03	9.39E+03 9.87E+03	9.56E+03 1.03E+04	1.07E+04 1.07E+04	ent moyen p	ninérale FDR:
City.	C(T)	33.2 33.2	33.51 33.45	32.56 32.55	32.72	32.83	32.57	32.79	32.04 32.08	31.91 31.97	31.43 31.91	32.07	90.7C	Render		C(t)	28.25 28.2	28.18 28.2	27.75 27.71	27.83 27.86	27.33 27.28	27.16 27.2	27.16 27.1	26.79 26.73	27.33 27.24	27.19 27.19	Rendem	nt moyen Eau r
dopage	A(log)	3.8	3.8	4.02		70.4	3.78	3.78	4.01	4.01	4		4	0	dopage	A(log)	5.58	5.58	5.63	5.63	5.73	5.73	5.63	5.63	5.84	5.84		Rendemer
Valeur de dopage	ne/puits	3.92E+01	3.92E+01	6.49E+01		10-125-0	3.74E+01	3.74E+01	6.43E+01	6.43E+01	6.22E+01		0.22E+UI	FDRS Short Protocol	Valeur de dopage	UG/puits	2.39E+03	2.39E+03	2.65E+03	2.65E+03	3.33E+03	3.33E+03	2.67E+03	2.67E+03	4.33E+03	4.33E+03		
i i	Echantilion	1EMI1F	2EMI1F	3EMI1F			SEMI1F	6EMI1F	7EMI1F	8EMI1F	9EMI1F		TIMET	FDR		Echantillon	1EMI2F	2EMI2F	3EMI2F	4EMI2F	5EMI2F	6EMI2F	7EMI2F	8EMI2F	9EMI2F	10EMI2F		

																				-											
ment %	315			50.1	41.7		51.3		1.04	56.2		5.65	52.5		39.8	43.3	ment	*	38.9	33.9	30.9	33.9	56.2	74.1		50.1	513	40.7	58.9	46.9	45.1
Rendement	50	240		-0.3	-0.38		-0.29			-0.25	1	-0.45	-0.28		-0.4	-0.37	Rendement	Bol	-0.41	-0.47	-0.51	-0.47	-0.25	-0.13		-0.3	-0.29	66.0-	-0.23	-0.35	25.0
B(log)				3.6	3.52		3.57		14.0	3.64	;	3,44	3.72		3.6	ηθΛ		B()og)	5.17	5.11	5.12	5.16	5.38	5.5		5.44	5.45	5.45	5.61	UG/L	
Résultat analyse is Moyenne UG/puits	104303.5	LUTZOU 2	10.0000	1.126+02	10+3/1.6		1.04E+02		101307.0	1.21E+02		10+3051	1.45E+02		1.11E+02	Rendement moyen pour le niveau 1.000 UG/L	Résultat analyse	Moyenne UG/puits	4.06E+03	3.546+03	3.71E+03	4.01E+03	6.66E+03	8.78€+03		7.64E+03	7.86E+03	7.80€+03	1.136+04	Rendement moyen pour le niveau 100 000 UG/L	Bandamant minusai Tour sároráftjaársitta W2 Short Protocol
DG/puits 1	5.61E+01	6.08E+01	1.05E+02	1.18E+02	9.16E+01 9.18E+01	1.11E+02	9.63E+01	8.406+01	1.126+02	1.30E+02	7.83E+01	T04376'/	1.41E+02 1.48E+02	1.20E+02	1.02E+02	ment moyen p	Résulta	UG/puits 1	4.12E+03 4.00E+03	3.58E+03 3.50E+03	3.53E+03 3.89E+03	4.08E+03 3.93E+03	6.57E+03 6.75E+03	9.38E+03 8.19E+03	7.14E+03	8.14E+03	8.32E+03	7.78E+03 7.82E+03	1.07E+04 1.19E+04	ient moyen po	nrátrioáranto V
C(t)	33.63 33.61	33.51 33.55	32.14	32.01	32.31 32.31	32.28	32.45	32.61	32	31.83	32.42	6.26	32.62	32.82	33.03	Rende		C(4)	28.13 28.17	28.28 38.3	28.33	28.15 28.2	27.21 27.18	26.79 26.95	27.42	27.26	27.24	27.59 27.58	27.19 27.06	Rendem	noven Tour sée
agedop A(log)		:	2	3.9	3.9		3.86		5	3.89	:	2.02	4	ſ	4		dopage	A(log)	5.58	5.58	5.63	5.63	5.63	5.63		5.74	5.74	5.84	5.84		Rondomont r
Valeur de dopage UG/puits A(log	3 975401			4.95E+01	4.95E+01		4.48E+01		101305/5	4.89E+01		4.896+01	6.22E+01		6.22E+01	W2 Short Protocol	Valeur de dopage	UG/puits	2.39E+03	2.396+03	2.65E+03	2.65E+03	2.67E+03	2.67E+03		3.43E+03	3.43E+03	4.33E+03	4.33E+03		
Echantilion	TARIW	TABIW		3TAR1W	4TARIW		STARIW		MTWHIG	7TAR1W		SIAKIW	9TAR1W		10TAR1W	CM.		Echantilon	1TAR2W	2TAR2W	3TAR2W	4TAR2W	5TAR2W	6TAR2W		7TAR2W	8TAR2W	9TAR2W	10TAR2W		
ment %	1 20	100	-	30.2	27.5		72.4		900	53.7		43./	43.7		45.7	45.4	ment	æ	46.8	34.7	67.6	40.7	77.6	61.7		60.3	74.1	40.7	41.7	54.6	20.0
Rendement	30			-0.52	-0.56		-0.14		cr.,-	-0.27	1	-0.36	-0.36		-0.34	-0.37	Rendement	Bol	-0.33	-0.46	-0.17	620-	110-	-0.21		-0.22	-0.13	620-	-0.38	-0.28	0.02
B(log)	52			3.5	3.46		3.64		505	3.74	:	5.65	3.64		3.66] 1/9r		B(log)	5.25	5.11	5.46	5.24	5.62	5.52		5.41	5.5	5.45	5.46	ne/r	_
Résultat analyse ts Moyenne UG/puits	4 955401	101230		9.97E+01	9.02E+01		1.36E+02		TODELOG	1.72E+02		1.585+02	1.36E+02		1.43E+02	Rendement moyen pour le niveau 1 000 UG/L	Résultat analyse	Moyenne UG/puits	5.49E+03	4.10E+03	9.09E+03	5.38E+03	1.29E+04	1.04E+04		8.13E+03	9.88E+03	8.90E+03	8.98E+03	Rendement moyen pour le niveau 100 000 UG/L	Bandamant mousa Tour administrata Anualian Short Protocol
Résulta UG/puits M	4.87E+01 5.04E+01	8.13E+01 7.78E+01	10+3E5-6	1.04E+02	9.15E+01 8.88E+01	1.29E+02	1.43E+02	1_38E+02 1_38E+02	1.68E+02	1.75E+02	1.396+02	704306-1	1.17E+02	1.46E+02	1.41E+02	nent moyen po	Résulta	UG/puits N	5.43E+03 5.54E+03	4.20E+03 4.00E+03	8.94E+03 9.25E+03	5.56E+03 5.20E+03	1.26E+04 1.33E+04	1.10E+04 9.80E+03	8.16E+03	8.10E+03	9.69E+03	8.62E+03 9.18E+03	8.70E+03 9.27E+03	ent moyen pou	triodizinto Anic
C(t)	33.8	33.14 53.5	32.88	32.77	32.93 32.97	32.09	31.96	32.01	31.66	31.61	31.9 11.0	TETE	32.51	32.58	32.62	Render		C(4)	27.74	28.07 28.13	27.16 27.12	27.76 27.85	26.54	26.7 26.84	26.96	26.97	26.75	27.46 27.38	27.45 27.37	Rendem	on Tour sárord
dopage A(log)	8		2	4.02	4.02		3.78		9/10	4.01	:	4.01	4		4	ocol	dopege	A(log)	5.58	85	5.63	5.03	5.73	5.73		5.63	5.63	58	5.84		indement mov
Valeur de dopage UG/puits A(log	104308 5			6.49E+01	6.49E+01		3.74E+01		10434/15	6.43E+01		6.43E+01	6.22E+01		6.22E+01	Aquadien Short Protocol	Valeur de dopage	UG/pults	2.39E+03	2.39E+03	2.65E+03	2.65E+03	3.33€+03	3.336+03		2.67E+03	2.67E+03	4.33E+03	4.33£+03		a
Echantilion	17481			3TAR1	4TAR1		STAR1		TUPIO	7TAR1		RIANI	9TAR1		10TAR1	Aquad		Echantillon	1TAR2	2TAR2	3TAR2	4TAR2	5TAR2	6TAR2		7TAR2	8TAR2	9TAR2	10TAR2	•	


Results from iQ-Check™ Quanti L. spp. – Extension 2020 - achieved by AdGène Robustesse Tour aéroréfrigérante

nt %	• cc	33.1	45.7	39.8		43.7	63.1		45.7	33.1		46.8	57.5		49	45.8		%	47.8		2.62	29.5	46.8	56.2		56.2	51.3		63.1	36.3	46.8	46.4	46.1
Rendement log	04.0	-0.48	-0.34	-0.4		-0.36	-0.2		-0.34	-0.48		-0.33	-0.24		-0.31	-0.35	Rendement	log	-0.33		-0.53	-0.53	-0.33	-0.25		-0.25	-0.29		-0.2	-0.44	-0.33	-0.35	-0.35
B(log)	000	3.32	3.46	3.62		3.66	3.58		3.44	3.53		3.68	3.76		3.69	- 		B(log)	5.25		5.05	5.1	5.3	5.48		5.48	5.34		5.43	5.4	5.51] 1/9r	
Résultat analyse ts Moyenne UG/puits	100 JOE J	5./9E+01	8.00E+01	1.16E+02		1.28E+02	1.07E+02		7.58E+01	9.49E+01		1.32E+02	1.60E+02		1.37E+02	Rendement moyen pour le niveau 1 000 UG/L	Résultat analyse	Moyenne UG/puits	4.99E+03		3.13E+03	3.53E+03	5.40E+03	8.48E+03		8.37E+03	6.14E+03		7.46E+03	6.95E+03	8.96E+03	Rendement moyen pour le niveau 100 000 UG/L	Rendement moyen Tour aéroréfrigérante FDRS Short Protocol
Résult UG/puits N	5.88E+01	7.99E+01	8.01E+01	1.18E+02 1.13E+02	1.25E+02	1.31E+02	1.09E+02 1.04E+02	7.51E+01	7.65E+01	8.05E+01 1.09E+02	1.48E+02	1.15E+02	1.58E+02 1.62E+02	1.35E+02	1.38E+02	nent moyen p	DS I	UG/puits N	5.00E+03 4.99E+03	3.27E+03	2.99E+U5	3.55E+03 3.52E+03	5.62E+03 5.19E+03	8.42E+03 8.53E+03	8.36E+03	8.38E+03	6.06E+03 6.22E+03	7.21E+03	/./1E+03	6.50E+03 7.39E+03	8.18E+03 9.74E+03	ent moyen po	réfrigérante F
C(t)	33.56 33.56	33.16	33.16	32.6 32.66	32.54	32.47	32.29 32.35	32.74	32.72	32.56 32.19	31.82	32.12	32.47 32.44	32.67	32.65	Render		C(t)	27.84 27.85	28.39	16.82	28.33 28.34	27.75 27.85	27.02 27	27.03	27.03	27.32 27.29	27.11	2/.03	27.65	27.52 27.31	Rendem	yen Tour aéro
dopage A(log)	c	3.8	3.8	4.02		4.02	3.78		3.78	4.01		4.01	4		4	0	lopage	A(log)	5.58		5.58	5.63	5.63	5.73		5.73	5.63		5.63	5.84	5.84	•	endement mo
Valeur de dopage UG/puits A(log	9 00E -04	3.92E+01	3.92E+01	6.49E+01		6.49E+01	3.74E+01		3.74E+01	6.43E+01		6.43E+01	6.22E+01		6.22E+01	FDRS Short Protocol	Valeur de dopage	UG/puits	2.39E+03		2.39E+03	2.65E+03	2.65E+03	3.33E+03		3.33E+03	2.67E+03		2.67E+03	4.33E+03	4.33E+03		æ
Echantillon	114040	TIAKIF	2TAR1F	3TAR1F		4TAR1F	STAR1F		6TAR1F	TTAR1F		8TAR1F	9TAR1F		10TAR1F	FDR		Echantillon	1TAR2F		21 AR2F	3TAR2F	4TAR2F	STAR2F		6TAR2F	7TAR2F		8TAR2F	9TAR2F	10TAR2F		

AFNOR	Validation	by	AFNOR
Certificat	tion		
Summar	y report		
iQ-Checl	k™ Legione	ella s	spp.

Sélectivité Souches cibles : Legionella spp.

	Souche	Origine	Taux cible inoculum	-	IQ Check Legionella spp	onella spp
			(Eq UG/puits)	Ct (moy)	UG/puits	Détection Legionella
-	L. pneumophila ser 1	CIP 103854T	1,00E+03	33,21	105	Détecté
2	L. pneumophila ser 2	CHUL LG 1007 3002	1,00E+03	33,00	122	Détecté
з	L. pneumophila ser 3	CHUL LG 1016 2014	1,00E+03	33,19	109	Détecté
4	L. pneumophila ser 4	CHUL LG 1006 3010	1,00E+03	33,03	119	Détecté
5	L. pneumophila ser 5	CHUL LG 1008 5013	1,00E+03	33,19	106	Détecté
9	L. pneumophila ser 6	ATCC 33215	1,00E+03	32,98	101	Détecté
7	L. pneumophila ser 7	CHUL LG 1022 1105	1,00E+03	32,93	129	Détecté
80	L. pneumophila ser 8	CHUL LG 1009 3009	1,00E+03	33,00	123	Détecté
6	L. pneumophila ser 9	CHUL LG 0925 4012	1,00E+03	32,92	130	Détecté
10	L. pneumophila ser 10	CHUL LG 1009 2018	1,00E+03	32,63	162	Détecté
5	L. pneumophila ser 11	CHUL LG 0841 3021	1,00E+03	32,58	168	Détecté
12	L. pneumophila ser 12	CHUL LG 1009 3041	1,00E+03	32,54	174	Détecté
13	L. pneumophila ser 13	CHUL LG 1022 1006	1,00E+03	32,88	133	Détecté
14	L. pneumophila ser 14	CHUL LG 0916 4027	1,00E+03	32,57	168	Détecté
15	L. pneumophila ser 15	CHUL LG 0312 4049	1,00E+03	32,61	163	Détecté
16	Legionella anisa	CIP 103870	1,00E+03	32,21	177	Détecté
17	Legionella birminghamsis	CHUL HL 06284037	1,00E+03	32,21	177	Détecté
18	Legionella bozemanii	CIP 103872 (eq ATCC 33217) ^a	1,00E+03	32,66	127	Détecté
19	Legionella cherrii	CHUL HL 05214024	1,00E+03	32,30	166	Détecté
20	Legionella cincinnatiensis	CIP 103875	1,00E+03	32,09	193	Détecté
21	Legionella dunmofii	CIP 103876 (éq ATCC 33279) ^b	1,00E+03	32,26	170	Détecté
22	Legionella erythra	CHUL LG0713012	1,00E+03	32,67	126	Détecté
23	Legionella feeleii	CHUL LG07503022	1,00E+03	32,28	169	Détecté
24	Legionella gormanii	CHUL LG 10232007	1,00E+03	32,63	133	Détecté
25	Legionella hackeliae	CIP103844	1,00E+03	32,50	143	Détecté
26	Legionella jordanis	CHUL LG 09455020	1,00E+03	32,25	172	Détecté
27	Legionella lansingensis	ATCC 43751	1,00E+03	32,15	185	Détecté
28	Legionella longbeachae	CHUL HL 06383034	1,00E+03	32,56	137	Détecté
29	Legionella maceachernii	CHUL LG 09221009	1,00E+03	32,21	177	Détecté
30	Legionella micdadei	CIP 103882 (éq ATCC 33218) ^c	1,00E+03	32,31	165	Détecté
31	Legionella oakridgensis	CHUL LG 07122004	1,00E+03	32,60	133	Détecté
32	Legionella parisiensis	CHUL LG 08513015	1,00E+03	32,19	180	Détecté
33	Legionella sainthelensi	CHUL HL 06353004	1,00E+03	32,20	179	Détecté
34	Legionella tucsonensis	CHUL LG 08495014	1,00E+03	32,37	158	Détecté
35	Legionella wadsworthii	CIP 103886	1,00E+03	32,09	193	Détecté

Appendix 6: Selectivity

Results from iQ-Check™ Quanti L. spp – Extension 2011 - v01 achieved by IPL santé, environnement durables Nord

^aFluoribacter bozemanae ^bFluoribacter dumofii ^cTatlockia micdadei

Sélectivité Exclusivité

	Sourche	Orinine	Taux cible inoculum		IQ Check L	lQ Check Legionella spp
			(Eq UG/puits) Ct (moy)	Ct (moy)	UG/puits	Détection
۲	Aeromonas hydrophila	Environnement	1,00E+04	N/A	E,	Non détecté
2	Alcaligenes faecalis	CIP 60.80	1,00E+04	N/A	ı	Non détecté
з	Bacillus subtilis	CCM 1999	1,00E+04	N/A	ï	Non détecté
4	Burkholderia cepacia	Eau de douche, La chapelle St Mesnin	1,00E+04	N/A	ı	Non détecté
5	Clostridium	Eau de puits, Boghni	1,00E+04	N/A	ı	Non détecté
9	Enterobacter aerogenes	Environnement	1,00E+04	49	5,17E-04	Non détecté
7	Escherichia coli	Eau d'alimentation, Liencourt	1,00E+04	N/A	ï	Non détecté
8	Flavobacterium algicola	Environnement	1,00E+04	N/A	'n	Non détecté
6	Klebsiella oxytoca	ATCC 49473	1,00E+04	45,42	7,56E-03	Non détecté
10	Listeria monocytogenes	CCM 5576	1,00E+04	N/A	Ţ	Non détecté
11	Proteus vulgaris	Environnement	1,00E+04	43,55	3,09E-02	Non détecté
12	Pseudomonas aeruginosa	Eau d'alimentation, Lille	1,00E+04	42,7	5,83E-02	Non détecté
13	Pseudomonas fluorescens	Environnement	1,00E+04	N/A	ı	Non détecté
14	Pseudomonas putida	Environnement	1,00E+04	N/A	ī	Non détecté
15	Serratia marcescens	Environnement	1,00E+04	43,13	4,21E-02	Non détecté
16	Stenotrophomonas maltophila	Canal de la Deûle, Lille	1,00E+04	N/A	1	Non détecté

