

COLILERT-18®/QUANTI-TRAY® or QUANTI-TRAY® 2000 for the enumeration of Escherichia coli in bathing waters

Summary report February 2024 Quantitative method

Certificat n°IDX 33/02-06/12

IDEXX Laboratories,INC Idexx Drive, Westbrook Maine 04 092 USA

This report includes 56 pages, including 8 appendices. Reproduction of this report is only permitted in its full form

> NORMEC ABIOLAB ADGÈNE 1 rue des conquérants -14 220 THURY-HARCOURT www.abiolab.fr – 02 31 15 62 80

Preamble

Studied method:

COLILERT-18[®]/QUANTI-TRAY[®] or QUANTI-TRAY[®]2000 for the enumeration of *Escherichia coli*

Validation standard:

Validation protocol for an alternative commercial method as compared with a reference method (revision 2 – May 2013)

Reference method*:

NF EN ISO 9308-3 (1999): Detection and enumeration of Escherichia coli and coliform bacteria Part 3: Miniaturized method (Most Probable Number) for the detection and enumeration of E. coli in surface and waste water

Scope:

Bathing waters which groups two types of waters:

- fresh waters
- sea waters

Certification body:

AFNOR Certification (http://nf-validation.afnor.org/)

*Analyses performed according to the COFRAC accreditation

<u>1.</u>	INTRODUCTION	5
<u>2.</u>	MODIFICATIONS SINCE THE PREVIOUS VALIDATION	5
2.1.	HISTORY OF VALIDATION	5
2.2.	SUMMARY OF MODIFICATIONS IN THE ALTERNATIVE METHOD	5
2.3.	USERS' COMPLAINTS	5
<u>3.</u>	METHOD PROTOCOL	6
3.1.	ALTERNATIVE METHOD	6
3.2.	REFERENCE METHOD	7
<u>4.</u>	SUMMARY OF THE RESULTS OBTAINED DURING THE INITIAL VALIDATION AND ANY RENEWALS AND	
EXTE	INSIONS	7

4.1.	METHODS COMPARATIVE STUDY	7
4.1.1.	RELATIVE ACCURACY	7
4.1.2.	LINEARITY	11
4.1.3.	LIMIT OF DETECTION AND LIMIT OF QUANTIFICATION	13
4.1.4.	Selectivity	14
4.1.5.	PRACTICABILITY	15
4.2.	INTERLABORATORY STUDY	16
4.2.1.	STUDY ORGANISATION	16
4.2.2.	Results	17
4.2.3.	INTERPRETATION	21
4.3.	EXTENSION STUDY	23
4.3.1.	RESULTS AND INTERPRETATION	23
4.3.2.	Conclusion	27

<u>5.</u>	CONCLUSION	28

APPENDIX 1: BACTERIAL STRESS	30

APPENDIX 2: RELATIVE ACCURACY RESULTS 31

APPENDIX 3: RAW RESULTS OF RELATIVE ACCURACY ON 20 USED RESULTS FOR FRESH WATERS AND ON 20 USED RESULTS FOR SEA WATERS 40

6. BIBLIOGRAPHY

28

APPENDIX 4: LINEARITY RESULTS	45
APPENDIX 5: LOD / LOQ RESULTS	48
APPENDIX 6: SELECTIVITY RESULTS	51
APPENDIX 7: ENUMERATION OF CULTURABLE MICROORGANISMS	53
APPENDIX 8: INTERLABORATORY STUDY RESULTS	54

1. Introduction

The method was initially validated in 2012 and renewed in 2016 and 2020 (certificate number IDX 33/02-06/12). The certificate shall expire the 19 June 2024. IDEXX Laboratories would like to renew the validation of the method according to the validation protocol for an alternative commercial method as compared with a reference method (revision 2 – May 2013).

2. Modifications since the previous validation

2.1. History of validation

Method	Approval	Type of certification	Comments	Expert laboratory	Protocol of validation
	2012	Initial Validation	/	ISHA	Rev. 1 (2010)
	2014	Extension	Use of Quanti-Tray 2000	ISHA	Rev. 2 (2013)
18®/QUANTI-	2016	Renewal 1	No change	ISHA	Rev. 2 (2013)
TRAY® or QUANTI-	2020	Renewal 2	No change	AdGène laboratoire	Rev. 2 (2013)
TRAY® 2000	2024	Renewal 3	No change	Normec Abiolab AdGène	Rev. 2 (2013)

The history of validation was summarized in the table below:

2.2. <u>Summary of modifications in the alternative method</u>

The protocol of validation is the same as the previous validation.

Modification of the alternative method

There were no modifications of the alternative method since the initial validation.

2.3. <u>Users' complaints</u>

No claim concerning the alternative method was recorded by AFNOR CERTIFICATION.

3. <u>Method Protocol</u>

3.1. Alternative method

Colilert-18 detects *E. coli* in bathing waters. It is based on IDEXX's patented Defined Substrate Technology (DST):

-when total or fecal coliforms metabolize Colilert-18's nutrient-indicator, ONPG, the sample turns yellow,

-when *E. coli* metabolize Colilert-18's nutrient-indicator, MUG, the sample also fluoresces.

Colilert-18 can simultaneously detect these bacteria at 1 CFU/100 mL within 18 hours even in the presence of as many as 2 million heterotrophic bacteria per 100 mL. The protocol of the alternative method is presented in figure 1.

Figure 1 : protocol of the alternative method

1.

Add contents of one pack to a 100 mL room temperature water sample in a sterile vessel. When Colilert-18 is used for *E. coli* detection in marine water, samples must be diluted at least tenfold.

Multiply the MPN value by the dilution factor to obtain the correct quantitative result.

2.

Cap vessel and shake until dissolved.

3.

Pour sample/reagent mixture into a Quanti-Tray or a Quanti-Tray 2000 and seal in an IDEXX Quanti-Tray Sealer.

4.

Place the sealed tray in a 36±2°C incubator for 18 hours to 22 hours (pre-warming to 36°C is not required). For incubation in a water bath, submerge the Tray below the water level using a weighted ring.

5.

Read results according to the Result Interpretation table. Count the number of positive wells and refer to the MPN table provided with the trays to obtain a Most Probable Number.

3.2. Reference method

The standard NF EN ISO 9308-3 (1999): Detection and enumeration of *E. coli* and coliforms – part 3: miniaturized method (MPN) for detection and enumeration of *E. coli* in surface and waste water, was used as the reference method.

The protocol of the reference method is presented in figure 2.

Figure 2: protocol of the reference method

Dilutions preparation
 Dilute 9 mL of sample in 9 mL of special diluent (1/2) ●
 Transfer 1 mL of ● in 9 mL of special diluent (1/20)

2. Inoculation

- Inoculate 200 μ L of the 1/2 dilution in each of the first 64 wells of the microplate - Inoculate 200 μ L of the 1/20 dilution in each of the 32 wells of the microplate

3. Incubation

- Cover the microplate with sterile adhesive

- Incubate the microplate at $44 \pm 1^{\circ}$ C for 36 h to 72 h

4. Reading and interpretation

Read results according to the Result Interpretation table. Count the number of positive wells using Wood lamp and refer to the MPN table provided with the trays to obtain a Most Probable Number. Express the result in MPN E. coli / 100 mL

4. <u>Summary of the results obtained during the initial validation</u> and any renewals and extensions

4.1. Methods comparative study

The data come from of the initial validation (2012 - ISHA Laboratory)

The following characteristics were studied during the comparative study of the methods: the relative accuracy, the linearity of the alternative method, the selectivity of the alternative method, the limit of detection and the limit of quantification of the alternative method, the practicability of the alternative method.

4.1.1. <u>Relative accuracy</u>

The relative accuracy is defined as the closeness of agreement between test result and the accepted reference value.

Number and nature of samples

Two types of water were tested (duplicate) with reference method and alternative method: freshwater and seawater.

Different types of analyzed samples are summarized in table 1.

Water type	Number of samples analyzed	Number of samples used
Sea waters	53	20
Fresh waters	41	22
Total	94	42

Globally, 94 samples were analyzed and 42 results were used. 16 naturally contaminated samples were analyzed. Others samples were artificially contaminated (cf. appendix 1).

The contamination levels used cover the entire measurement range of the alternative method.

Results

Figure 3 presents the two-dimensional graphs for the two matrices. The y-axis is reserved for the alternative method and the x-axis for the reference method. The representation of a line of equation "y = x" figures dashed on the graphs. Raw results are in appendix 2.

Figure 3: two-dimensional graphs for relative accuracy in log CFU and log MPN / test portion (black line: y=x)

Statistical analysis

The relationship of relative accuracy between the reference method and the alternative method is evaluated with the linear model: y = a + bx. This formula corresponds to the equation of the linear regression drawn from raw results obtained by experimentation, y representing the alternative method and x the reference method.

There is a perfect accuracy (or there is no systematic bias) between the two methods if this equation is equal to the theoretical 'y = x' equation, which applies in the ideal model where the two methods behave similarly.

The intercept is theoretically zero in this ideal model (hypothesis [a = 0]). The estimated intercept obtained with the two methods is checked using p {a = 0}. If the alternative method is a systematic bias against the reference method, the probability p {a = 0} is less than α = 0.05.

The 'b' slope is theoretically equal to 1 in the ideal model (hypothesis [b = 1]). The estimated slope obtained with the two methods should pass by p {b = 1}. Statistically, if the alternative method does not give the same values as the reference method, the probability p {b = 1} is less than α = 0.05.

The linear regression method is chosen over the value of the robustness of the ratio R of overall repeatability standard deviation:

- If Rob.R > 2, linear regression by least-squares (OLS 1) with the x-axis for the reference method,

- if Rob.R < 0.5, a linear regression by least-squares (OLS 2) with the x-axis for the alternative method,

- If 0.5 < Rob.R < 2, orthogonal regression (GMFR) with the x-axis to the reference method.

Table 2: statistical data (log MPN / test portion) for the enumeration of E. coli in bathing waters

Maduin		Democratica	- -			T		4(-)	L.	• •(b)	Probabilities (%)	
Matrix	Rob.R	Regression used		а	t(a)	D	t(b)	Ord. at 0	Slope at 1			
Sea waters	1.078	GMFR	2.086	-0.232	2.221	1.053	1.212	3.2	23.3			
Fresh waters	0.926	GMFR	2.074	-0.494	3.526	1.157	2.938	0.1	0.5			
Bathing waters	1.078	GMFR	2.016	-0.337	2.894	1.087	3.226	0.5	0.2			

Table 3: bias and repeatability of the two methods (RM: reference method and AM: alternative method)

E		D) in log		Repeatab	ility in log	
Matrix	Matrix Mean Median		1	r		b.r
			MR	MA	MR	MA
Sea waters	-0.046	-0.047	0.476	0.248	0.273	0.294
Fresh waters	-0.120	-0.066	0.447	0.363	0.272	0.252
Bathing waters	-0.085	-0.058	0.461	0.313	0.273	0.294

Sea waters

The hypothesis [b = 1] is accepted but the hypothesis [a = 0] isn't accepted. However, the correlation coefficients and equation are satisfactory as shown below:

- r = 0.984,
- log Alt. = 1.053 log Ref. 0.232

• Fresh waters

The two hypotheses [b = 1 and a = 0] aren't accepted. However, the correlation coefficients and equation are satisfactory as shown below:

- r = 0.979,
- log Alt. = 1.157 log Ref. 0.494
 - Bathing waters (seawaters + freshwaters)

The two hypotheses [b = 1 and a = 0] aren't accepted. However, the correlation coefficients and equation are satisfactory as shown below:

- log Alt. = 1.087 log Ref. 0.337
 - Remark:

The limits of detection of the two protocols of the alternative method and of the reference method are different, based on different dilution factors and MPN tables:

- 1 MPN/100 mL for the alternative method in fresh waters,
- 10 MPN/100 mL for the alternative method in sea waters,
- 15 MPN/100 mL for the reference method.

That's why, for fresh waters and bathing waters, if the data of the alternative method inferior to the limit of detection of the reference method are not taken into account (2 samples involved), the following values are obtained (data and calculations in appendix 3):

Fresh waters:	Bathing waters:
-r = 0.989,	- r = 0.991
- log Alt. = 1.034 log Ref. – 0.158	- log Alt. = 1.040 log Ref 0.180

With these values, the statistical exploitation shows that the two hypotheses [b = 1 and a = 0] are accepted with α = 5%.

Conclusion

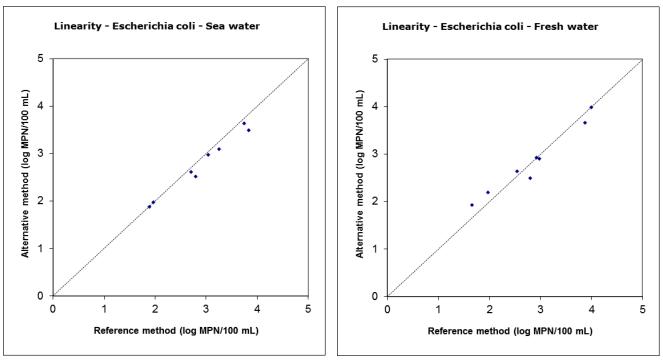
The bias of the alternative method is slightly negative. The relative accuracy of the alternative method is satisfactory.

4.1.2. Linearity

The linearity is the ability of the method when used with a given matrix to give results that are in proportion to the amount of analyte present in the sample, that is an increase in analyte corresponds to a linear or proportional increase in results.

Contamination levels

The couples matrix / strain are presented in Table 4. For each couple, four contamination levels were tested in duplicate by the reference method and the alternative method.


Table 4 : couples matrix – strain analyzed

Strain	Matrix	Target contamination level (CFU/100 mL)
Escherichia coli ESC.1.112	Fresh water	F0 F00 4 000 F 000
Escherichia coli ESC.1.119	Sea water	50 – 500 – 1 000 – 5 000

Results

Figure 4 presents the two-dimensional graphs for the two couples matrix-strain. The y-axis is reserved for the alternative method and the x-axis for the reference method. The representation of a line of equation "y = x" figures dashed on the graphs. Raw results are in appendix 4.

Statistical analysis

Statistical interpretations are made according to requirements of standard NF ISO 16140 (see table 5).

The choice of the linear regression method is compared to the value of the robustness of the ratio R of the standard deviations of repeatability overall:

- if Rob.R> 2, a linear regression least squares (OLS 1) is used with the x-axis for the reference method,

- if Rob.R <0.5, a linear regression least squares (OLS 2) is used with the x-axis for the alternative method,

- if 0.5 <Rob.R <2, an orthogonal regression (GMFR) is used with the x-axis to the reference method.

Table 5: statistical data for the linearity

Strain / matrix	Rob. R	Regression used	F critical	Rob. F	P (Rob.F)	r	Regression
<i>E. coli /</i> sea water	1.111	GMFR	6.94	0.305	0.753	0.992	log Alt.= 0.859 log Ref + 0.404
<i>E. coli /</i> fresh water	1.222	GMFR	6.94	0.185	0.838	0.997	log Alt.=0.891 log Ref + 0.189

The relationship between the 2 methods is not linear:

- if Rob.F > critical F or,
- if P (Rob.F) < α (= 0.05).

Conclusion

The relationship between the two methods is linear for the two couples (*E. coli* / sea water and *E. coli* / fresh water). The correlation coefficients are satisfactory. So, the linearity of the alternative method is satisfactory.

4.1.3. Limit of detection and limit of quantification

The detection and quantification limits are checked in accordance with the standard EN ISO 16140. Three parameters are determined.

Here are their ISO 16140 definitions:

<u>- the critical level (LC)</u> is the smallest amount which can be detected (not null), but not quantified as an exact value. Below this value, it cannot be sure that the true value is not null. At this level, the false negatives probability β is 50 % (β is the second type of statistical error). <u>- the detection limit (LOD)</u> is higher than the critical level, because it involves a power, the probability 1 - β , which has to be well over 50 %, for example 95 %.

- the quantification limit (LOQ) is the smallest amount of analyte, (that is the lowest actual number of organisms), which can be measured and quantified with defined precision and accuracy under the experimental conditions by the method under validation.

Test protocols

The limits of detection and quantification were determined by analysing a pure culture of *E. coli* by the alternative method. Five levels of contamination (including level 0), with six replications for each level, were studied in sterilized water.

Results

Results are shown in the following tables and in appendix 5.

Level (CFU/100mL)	Number of positive samples	Standard deviation (s ₀)	Bias (x ₀)
0	0	0.000	0
0.2	1	0.408	0
0.4	2	0.516	0
<u>1.5</u>	3	<u>0.548</u>	<u>0.5</u>
3	6	1.627	1.5

Table 6 : data (s_0 and x_0) of E. coli enumeration (underlined: the reference level)

Table 7: LC, LOD and LOQ values of the alternative method

Parameter	Formula	Values obtained
Critical level (LC)	1.65 s ₀ + x ₀	1.40
Limit of detection (LOD)	3.3 s ₀ + x ₀	2.31
Limit of quantification (LOQ)	10 s ₀ + x ₀	5.98

Conclusion

The detection limit and quantification limit of the alternative method are satisfactory.

4.1.4. Selectivity

The selectivity of the alternative method is evaluated by its inclusivity and its exclusivity.

Inclusivity is the ability of the alternative method to detect the target analyte from a wide range of strains.

Exclusivity is the lack of interference by a relevant range of non-target strains with the alternative method.

Test protocols

Twenty *E. coli* strains and thirty non-target strains (from the national, international and ISHA internal collections) were analyzed. The assays were performed by the alternative method protocol.

Results

Raw results are in appendix 6.

All target strains tested are detected by the alternative method except for one strain (which is not detected by the reference method either).

For the thirty non-target strains tested, no positive result was observed. See tables below.

Conclusion

The selectivity of the alternative method can be considered as satisfactory.

4.1.5. <u>Practicability</u>

The practicability was evaluated according to the 13 criteria defined by AFNOR Technical Committee.

<u>1- Mode of packaging of test components</u> The Colilert-18 reagent is conditioned on single capsules. The Quanti-Tray devices are conditioned by ten in aseptic bag.	8- Handling time and flexibility of the method in relation to the number of samples The duration of analysis according the reference method is more important than the duration of use of alternative method.
2- Volume of reagents	9- Time required for results
Unknown.	The time to obtain results for the alternative
2. Otherware conditions of commonweater and	method is 18 hours for negative samples and
<u>3- Storage conditions of components and</u> <u>shelf-life of unopened products</u>	positive samples. Concerning the reference method, the delay for negative samples is
The Colilert-18 reagent should be conserved at	between 24 and 48 hours and for positive
2 – 8°C.	samples, the delay is between 48 and 72 days
The Quanti-Tray devices should be conserved at	
4 – 30°C.	10- Operator qualification
	Identical as necessary for the reference method
<u>4- Modalities after first use</u> Each Colilert-18 test serves a unique analysis	11- Steps common with the reference
and should not be reused.	method
	None.
5- Equipment and specific local	
requirements	12- Traceability of analysis results
Quanti-Tray® Sealer model 2X.	None.
Wood lamp.	12 Maintenance by laboratory
6- Reagents ready to use or for	<u>13- Maintenance by laboratory</u> None.
reconstitution	
None.	
7- Training period for operator with no	
experience with the method	
The duration of training is estimated to be 1 hour.	
iloui.	

4.2. Interlaboratory study

The main object of the interlaboratory study is to determine the variability of the results obtained by different laboratories analysing identical samples and to compare these results within the framework of the comparative study of the methods.

4.2.1. Study organisation

Participating laboratories

The interlaboratory study was realized by the expert laboratory and fifteen participating laboratories.

• E. coli absence in the matrix

Before spiking, the absence of *E. coli* was verified in the batch of seawater used according to the reference method.

Strain stability in the matrix

The strain stability in seawater matrix was evaluated for 3 days at (5 ± 3) °C. The strain used was *E. coli* (ISHA code: ESC.1.119).

The samples were analysed at D0, D+1 and D+2 by the reference method. The results are summarized in table 10.

Table 8 : results (E. coli / 100 mL) of the stability study of the strain ESC.1.119 in seawater matrix

Day	Level 1	Level 2	Level 3
D0	60	534	1049
D1	75	563	882
D2	30	504	861

The results show that the *E. coli* strain used is stable for 2 days at (5±3)°C in sea water matrix.

Samples preparation and spiking

The matrix was inoculated with the target strain suspension to obtain 4 contamination levels:

- -level 0: 0 CFU/100 mL,
- -level 1: from 50 to 100 CFU/100 mL,
- -level 2: from 250 to 500 CFU/100 mL,
- -level 3: from 1000 to 1500 FCU/100 mL

The matrix was distributed at 50 mL in sterile bottles. Every bottle was individually spiked and homogenized. Eight samples per laboratory were prepared (2 samples per contamination level). Each laboratory received 8 samples to analyse, 1 sample to quantify the endogenous microflora and 1 water sample containing a temperature probe.

The results of the enumerations of the heterophilic flora, the target levels and the real levels of contamination are presented in table 9.

Table 9: target level, real level and TVC of the matrix

Contamination	Flora (CFU/mL)		Escherichia coli ESC.1.119 (MPN /100 mL)					
level	22°C	36°C	Target level	Real level				
0			0	0				
1	10		50 to 100	147				
2	10	10 5	250 to 500	758				
3								1 000 to 1 500

Samples labelling

The labelling of the bags was realized as follows: a code to identify the laboratory: from A to O (cf. table 10) and a code to identify each sample, only known by the expert laboratory. The samples and the temperature control vial (water sample with a temperature probe) were stored at 4°C before shipping.

Table 10: sample code by contamination level

Contamination level (MNP <i>E. coli</i> / 100 mL)	Sample code
0	4 / 8
50 to 100	6/7
250 to 500	1/3
1 000 to 1 500	2/5

Samples shipping

The samples were shipped in a coolbox April 16th, 2012.

Samples reception and analysis

The coolboxes were received April 17th, 2012 by all the participating laboratories. The control temperature was recorded upon receipt of the package and the temperature probe sent to the expert laboratory. The samples were analysed on April 17th, 2012. The expert laboratory concurrently analysed a set of samples under the same conditions with both methods.

4.2.2. <u>Results</u>

Temperature and state of the samples

The temperature readings at reception, the state of the samples and the data from the thermal probe are shown in table 11.

Table 11: temperature and state of the samples upon reception and data of the temperature probes for the transportation time of samples (/: data not available)

l choratom,		Ctata of the complete	Temperature recorded by the probe		
Laboratory	Temperature (°C)	State of the samples	Mean	SD	
Α	4.1°C	Ok	2.9	1.0	
В	5.2°C	Ok	3.4	0.5	
С	6.7°C	Ok	3.7	0.3	
D	6.8°C	Ok	2.5	0.4	
E	6.4°C	Ok	2.4	1.0	
F	3.8°C	Ok	1	1	
G	2.0°C	Ok	2.4	0.5	
Н	3.0°C	Ok	2.9	0.3	
I	5.2°C	Ok	2.5	0.3	
J	6.0°C	Ok	/	1	
К	2.1°C	Ok	2.2	0.5	
L	4.8°C	Ok	2.6	0.4	
М	1.6°C	Ok	2.4	0.6	
N	6.1°C	Ok	2.3	0.7	
0	4.8°C	Ok	1.6	0.8	

The analysis of thermal profiles of probes showed for all participants that the average of temperature during the shipment is comprise between 1.6 and 3.7°C.

Total viable counts

Raw results are in appendix 7.

For the whole laboratories, the total viable counts at 22°C vary between <1 and 240 CFU/mL. Concerning the total viable counts at 36°C, the results were varying between <1 and 7 CFU/mL.

Expert laboratory and collaborating laboratories results

The overall results are presented in Table 12 and in appendix 8.

The results of the reference method are presented for a reading of the microplates after 36 at 72 hours of incubation at $44 \pm 1^{\circ}$ C.

For alternative method, reading of Quanti-Tray devices was performed between 18 and 22 hours.

The results of all laboratories are presented in the following tables.

Table 12: E. coli MPN enumeration results per 100 mL seawater samples (MR: reference method, MA: alternative method, R1: repetition 1 and R2: repetition 2)

	Level 0								
				MR				MA	
Laboratory		R1			R2		R1	R2	
	MPN/ 100 mL	Low limit	High limit	MPN/ 100 mL	Low limit	High limit	MPN/100 mL	MPN/100 mL	
Α	<15	1	1	<15	1	1	<10	<10	
В	<15	1	1	<15	1	1	<10	<10	
C	<15	1	1	<15	1	/	<10	<10	
D	<15	1	1	<15	1	1	<10	<10	
E	<15	1	1	<15	1	/	<10	<10	
F	<15	1	1	<15	1	1	<10	<10	
G	<15	1	1	<15	1	/	<10	<10	
н	<15	1	1	<15	1	1	<10	<10	
I	<15	1	1	<15	1	/	<10	<10	
J	<15	1	1	<15	1	/	<10	<10	
К	<15	1	1	<15	1	/	<10	<10	
L	<15	1	1	<15	1	1	<10	<10	
М	<15	1	/	<15	1	/	<10	<10	
N	<15	1	1	<15	1	1	<10	<10	
0	<15	1	1	<15	1	/	<10	<10	
Expert	<15	1	/	<15	1	/	<10	<10	
				Le	evel 1				
Laboratory				MR				MA	
Laboratory		R1			R2		R1	R2	
	MPN/100 mL	Low limit	High limit	MPN/100 mL	Low limit	High limit	MPN/100 mL	MPN/100 mL	
Α	93	41	206	93	42	207	86	108	
В	127	63	253	109	52	230	10	41	
C	94	42	208	94	42	208	75	63	
D	127	63	253	<15	1	1	41	63	
E	110	52	231	15	2	106	52	63	
F	46	15	142	61	23	163	63	41	
G	77	32	186	160	86	298	98	135	
Н	15	2	106	46	15	142	51	52	
I	125	62	251	61	23	163	97	30	
J	61	23	163	61	23	163	52	52	
К	94	42	208	93	42	207	40	41	
L	94	42	208	144	75	276	52	122	
М	197	63	253	46	15	142	95	109	
N	94	42	208	46	15	142	62	74	
0	127	63	253	126	63	252	119	109	
Expert	126	63	252	30	8	121	40	84	

AFNOR Certification Summary report Colilert-18[®] /Quanti-Tray[®] or Quanti-Tray[®] 2000

V0 February 2024 19

				L	evel 2			
			Ν	ИR			N	1A
Laboratory		R1		R2			R1	R2
	MPN/ 100 mL	Low limit	High limit	MPN/ 100 mL	Low limit	High limit	MPN/ 100 mL	MPN/ 100 mL
А	697	486	981	332	212	521	496	487
В	529	363	769	434	290	650	331	404
С	332	212	521	438	293	655	389	457
D	177	98	321	465	314	689	408	374
Е	234	138	394	434	290	650	425	369
F	195	111	344	393	258	598	259	238
G	415	275	626	393	258	598	292	482
Н	585	408	840	465	314	689	387	331
I	654	462	927	500	341	733	393	269
J	412	272	622	375	244	575	393	309
К	344	221	537	504	344	738	754	530
L	606	424	866	640	451	909	350	529
М	476	322	703	580	403	833	231	512
Ν	559	387	808	640	451	909	305	231
0	585	408	840	668	473	944	496	437
Expert	697	479	953	559	387	808	616	459
				L	evel 3			
			Ν	ИR			N	1A
Laboratory		R1			R2		R1	R2
	MPN/	L e lies it	l link lineit	MPN/	L aver limit	l Dark Darit	MPN/	MPN/
	100 mL	Low limit	Hign limit	High limit 100 mL		Low limit High limit		100 mL
А	1049	773	1423	882	642	1213	591	712
В	858	622	1182	489	333	720	809	771
С	773	555	1075	851	617	1174	733	512
D	647	456	917	838	606	1157	581	738
E	514	352	751	1007	740	1371	581	847
F	690	490	972	805	580	1116	556	594
G	580	403	833	943	690	1290	754	573
Н	759	544	1058	759	544	1058	733	581
I	1305	973	1751	742	531	1037	727	663
J	918	670	1258	543	375	783	906	884
K	1136	841	1535	838	606	1157	909	1017
L	1007	740	1371	968	709	1321	776	933
М	882	642	1213	872	633	1200	988	1334
Ν	882	642	1213	968	709	1321	733	622
0	1567	1174	2092	893	650	1227	836	794
Expert	633	445	901	1034	761	1405	1010	833

AFNOR Certification Summary report Colilert-18[®] /Quanti-Tray[®] or Quanti-Tray[®] 2000

V0 February 2024 20

4.2.3. Interpretation

The data presented in the following paragraphs were calculated from the results in log₁₀ MPN/100 mL in the same way that the presentation of the results of the preliminary study.

Bias calculation

Table 13 shows the target value, the mean, standard deviation of fidelity, the relative bias and the bias of each level of contamination for the alternative method.

Table 13: Calculation of the alternative method bias

Values	log (MPN /mL)				
Contamination level	Low	Medium	High		
Target value	1.971	2.667	2.937		
Average	1.795	2.580	2.870		
Relative bias	-8.93%	-3.26%	-2.26%		
Bias	-0.176	-0.087	-0.067		

Accuracy profile

Tables 14 and 15 show the values of tolerance and the tolerance limits of the alternative method for a probability value of tolerance of 80% (table 14) and of 90% (table 15).

Probability of		log (MPN /mL)			
tolerance	Levels	Low	Medium	High	
	Low tolerance value	1.482	2.415	2.742	
000/	High tolerance value	2.107	2.746	2.999	
80%	Low tolerance limit	-0.489	-0.253	-0.067	
	High tolerance limit	0.137	0.079	0.062	

Table 14: Values and tolerance limits of the alternative method with $\beta = 80 \%$

Table 15: Values and tolerance limits of the alternative method with $\beta = 90 \%$

Probability of	Levels	log (MPN /mL)					
tolerance		Low	Medium	High			
	Low tolerance value	1.389	2.366	2.704			
90%	High tolerance value	2.201	2.795	3.037			
90%	Low tolerance limit	-0.582	-0.302	-0.233			
	High tolerance limit	0.230	0.128	0.100			

Figures 5 and 6 show the accuracy profiles using respectively $\beta = 80\%$ and $\beta = 90\%$.

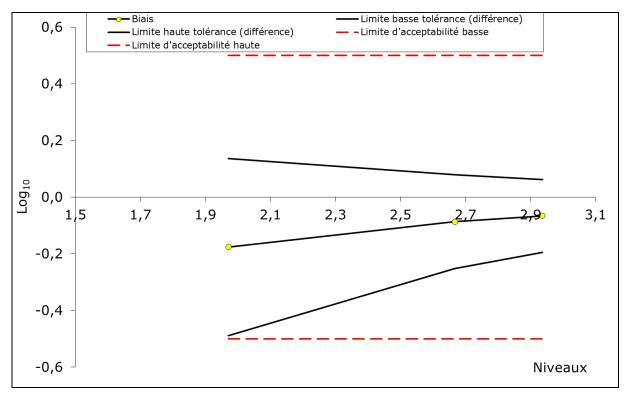
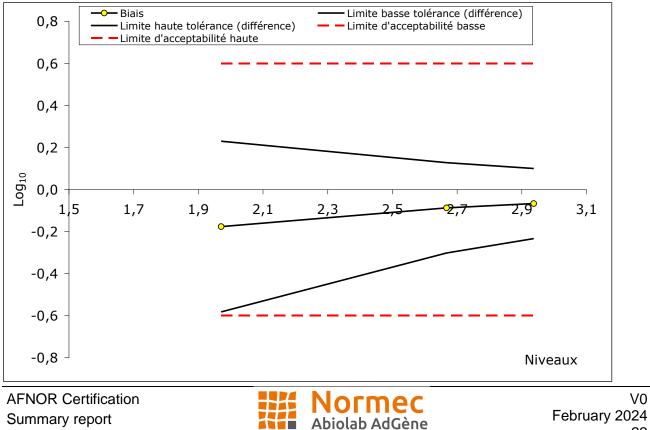



Figure 5: Accuracy profile of the alternative method with tolerance probability of 80 % and acceptability limits at 0,5 log

Figure 6: Accuracy profile of the alternative method with tolerance probability of 90 % and acceptability limits at 0,6 log

22

Comments

The accuracy profile obtained from the results of the reference method and the alternative method shows that the bias of Colilert method for the enumeration of *E. coli* in bathing waters is acceptable. The tolerance limits of the alternative method for a probability of 90% tolerance are included within the limits of acceptability of 0,6 log.

4.3. Extension study

The aim of the extension study was compared the use of a Quanti-Tray 2000 or the use of a Quanti-Tray with an IDEXX's enumeration method. For this study, data obtained with Colilert-18 were used. Additionally, in order to increase data, other sets of results providing by comparison between Quanti-Tray and Quanti-Tray 2000 were also used. But these data providing of the alternative method Enterolert-E.

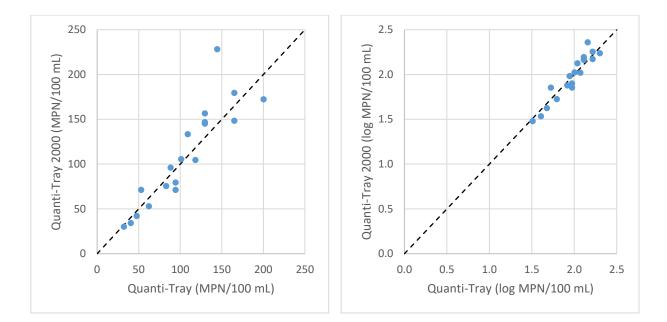
4.3.1. <u>Results and interpretation</u>

Two sets of results are available:

- IDEXX data from an analysis of a tap water using Colilert-18 associated with Quanti-Tray 2000 and with Quanti-Tray.

- ISHA data from the comparative study for the NF Validation certification of the method Enterolert-E with Quanti-Tray 2000,

Results from Colilert-18 / Quanti-Tray study


Raw results

Results were obtained from IDEXX Company. An *Escherichia coli* suspension was spiked in a neutralized tap water from 30 to 180 CFU/100 mL and then analyzed with Colilert-18 associated with Quanti-Tray and with Quanti-Tray 2000.

Results are available in the summary report of the AFNOR Certification validation of the Enterolert-E method. Two two-dimensional graphs are shown in figure 8, presenting the results obtained with the Quanti-Tray (the "validated" Quanti-Tray for the Colilert-18 method in drinking waters) as the reference method.

Figure 8: Comparison of results obtained with Quanti-Tray 2000 and with Quanti-Tray for the enumeration of Escherichia coli in tap water

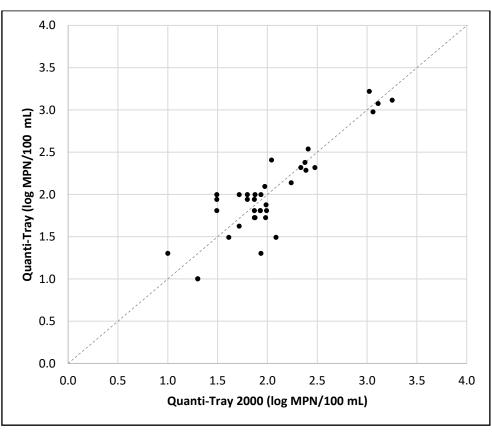
Statistical interpretation

A Student-Fisher test has been performed from the data obtained. The results are shown in the table below.

t-Test: Paired Two	Sample for Means	
Parameter	<u>Quanti-Tray</u>	Quanti-Tray 2000
Mean	104.8	109.1
Variance	2119.6	3043.9
Observations	19	19
Pearson Correlation	0.892	
Hypothesized Mean Difference	0	
df	18	
t Stat	-0.745	
P(T<=t) one-tail	0.233	
t Critical one-tail	1.734	
P(T<=t) two-tail	0.466	
t Critical two-tail	2.101	

Both one-tailed and two-tailed tests conclude that there is no statistically significant difference between the enumeration of *Escherichia coli* with Quanti-Tray or with Quanti-Tray 2000 at α =0.05.

Results from Enterolert-E / Quanti-Tray 2000 comparative study


Raw results

Results have been collected from samples used in the comparative study for the validation of the method Enterolert-E in the common enumeration range of the two devices, namely from 10 to 2000 MPN/100 mL. A minimum of 10 results was asked by the Technical Board: it's a total of 18 samples that have been taken into account.

Results are available in the summary report of the AFNOR Certification validation of the Enterolert-E method. A two-dimensional graph is shown in figure 7, presenting the results obtained with the Quanti-Tray 2000 (the "validated" Quanti-Tray for the Enterolert-E method) as the reference method.

Figure 7: Comparison of results obtained with Quanti-Tray 2000 and with Quanti-Tray for the validation of the Enterolert-E method

Statistical interpretation

Validation protocol for an alternative commercial method as compared with a reference method:

A statistical interpretation has been performed according to the requirements of the Validation protocol for an alternative commercial method as compared with a reference method, considering the Quanti-Tray 2000 as the reference device and using the tests for the relative accuracy. Results are available in the summary report of the AFNOR Certification validation of the Enterolert-E method.

According to this protocol, the relationship of relative accuracy between QT-2000 and QT is evaluated with the linear model: y = a + bx'. This formula corresponds to the equation of the linear regression

drawn from raw results obtained by experimentation, y representing the QT-2000 devices and x the QT-devices.

There is a perfect accuracy (or there is no systematic bias) between the two methods if this equation is equal to the theoretical 'y = x' equation, which applies in the ideal model where the two methods behave similarly.

The intercept is theoretically zero in this ideal model (hypothesis [a = 0]). The estimated intercept obtained with the two methods is checked using p {a = 0}. If the alternative method is a systematic bias against the reference method, the probability p {a = 0} is less than α = 0.05.

The 'b' slope is theoretically equal to 1 in the ideal model (hypothesis [b = 1]). The estimated slope obtained with the two methods should pass by p {b = 1}. Statistically, if the alternative method does not give the same values as the reference method, the probability p {b = 1} is less than $\alpha = 0.05$.

The results of the statistical tests are shown in the table below.

Dah D. Dawraasian wood		T . 101 1		(1.)			Probabilities (%)			
Rob.R	Regression used	T critical	а	t(a)	b	t(b)	Intercept at 0	Slope at 1		
1.416	GMFR	2.101	-0.097	0.460	1.040	0.523	64.8	60.4		

The equation for the regression line is as follows: log Alt = $1.040 \log \text{Ref} - 0.097$.

Hypothesis [a = 0 and b = 1] is accepted for the comparison of the enumeration of *enterococci* with the Enterolert-E method using a Quanti-Tray versus a Quanti-Tray 2000.

Student-Fisher test

A Student-Fisher test has been also performed from the data obtained during the validation of the Enterolert-E method. The results of the test are shown in the table below:

t-Test: Paired Two S	ample for Means	
Parameter	<u>Quanti-Tray</u>	Quanti-Tray 2000
Mean	1.998	2.015
Variance	0.280	0.259
Observations	36	36
Pearson Correlation	0.883	
Hypothesized Mean Difference	0	
df	35	
t Stat	-0.398	
P(T<=t) one-tail	0.346	
t Critical one-tail	1.690	
P(T<=t) two-tail	0.693	
t Critical two-tail	2.030	

Both one-tailed and two-tailed tests conclude that there is no statistically significant difference between the enumeration of *enterococci* with Quanti-Tray or with Quanti-Tray 2000 at α =0.05.

4.3.2. <u>Conclusion</u>

The assays realized showed that the enumerations with the NF Validation certified IDEXX methods can be performed either with a Quanti-Tray device or with a Quanti-Tray 2000 device according to the expected concentration of the target analyte in the sample without introducing any bias in the measurement.

5. Conclusion

<u>Comparative study</u>

The linearity and relative accuracy of the Colilert-18 / Quanti-Tray or Quanti-Tray2000 method for the enumeration of *E. coli* in bathing waters are satisfactory.

The bias between the two methods is acceptable. The limits of detection and quantification of the method are satisfactory.

Colilert-18 / Quanti-Tray or Quanti-Tray2000 method for the enumeration of *E. coli* is specific and selective.

Extension study showed that the enumerations with the NF Validation certified IDEXX methods can be performed either with a Quanti-Tray device or with a Quanti-Tray 2000 device according to the expected concentration of the target analyte in the sample without introducing any bias in the measurement.

Interlaboratory study

The bias of the alternative method is relatively stable from the low level of contamination to the high level of contamination. For all levels of contamination, the tolerance limits are between the limits of acceptability, meaning that at least 90% of the results will be between the limits of acceptability as defined at 0,6 log.

6. **<u>BIBLIOGRAPHY</u>**

Study published since 2016 :

Tiwari A., Niemela S., et al., Comparison of Colilert-18 with miniaturized most probable number method for monitoring of *Escherichia coli* in bathing water, Journal of Water and Health, 2016, 14(1):121-31

Method including in:

- International Organization for Standards (ISO). ISO 9308-2:2012 Water quality Enumeration of Escherichia coli and coliform bacteria — Part 2: Most probable number method
- UK Standing Committee of Analysts (SCA) Blue Books: The Microbiology of Recreational and Environmental Waters (2016) – Part 3 - Methods for the isolation and enumeration of Escherichia coli
- World Health Organization (WHO). WHO recommendation on scientific, analytical, and epidemiological developments relevant to the parameters for bathing water quality in the Bathing Water Directive (2006/7/EC). 2018

Done at Thury-Harcourt, February 07, 2024 Mickaël MORVAN Research & Development Engineer

tessulan

Appendix 1: Bacterial stress

Code	Souche	Origine	Stress appliqué	Intensité du stress	Numéro	Eau
ESC.1.116	Escherichia coli	Eau de puits	4 j à 4°C + 10 min à -80°C + 5 min à 51°C	1,88	52	Plage de la Roquille
ESC.1.116	Escherichia coli	Eau de puits	4 j à 4°C + 10 min à -80°C + 5 min à 51°C	1,88	90	La somme
ESC.1.116	Escherichia coli	Eau de puits	4 j à 4°C + 10 min à -80°C + 5 min à 51°C	1,88	94	Troyes
ESC.1.117	Escherichia coli	Eau de puits	4 j à 4°C + 10 min à -20°C + 5 min à 51°C	1,3	53	Plage de Carnon
ESC.1.117	Escherichia coli	Eau de puits	4 j à 4°C + 10 min à -20°C + 5 min à 51°C	1,3	91	Saint Quentin en Yvelines
ESC.1.117	Escherichia coli	Eau de puits	4 j à 4°C + 10 min à -20°C + 5 min à 51°C	1,3	95	Etampes
ESC.1.119	Escherichia coli	Eau de distribution	4 j à 4°C + (5 min à -80°C + 5 min à 36°C) x2	0,9	54	Plage du Couchant
ESC.1.119	Escherichia coli	Eau de distribution	4 j à 4°C + (5 min à -80°C + 5 min à 36°C) x2	0,9	92	Villennes sur Seine
ESC.1.123	Escherichia coli	Eau	4 j à 4°C + (5 min à -20°C + 5 min à 36°C) x2	1,1	55	Plage du Point Zero
ESC.1.123	Escherichia coli	Eau	4 j à 4°C + (5 min à -20°C + 5 min à 36°C) x2	1,1	93	Saint Leger en Yvelines
ESC.1.111	Escherichia coli	Eau de fontaine	4 j à 4°C + 30 min à -80°C + 10 min à 36°C + 10 min à 51°C	1,1	47	Saint Roch
ESC.1.111	Escherichia coli	Eau de fontaine	4 j à 4°C + 30 min à -80°C + 10 min à 36°C + 10 min à 51°C	1,1	20	Fécamp
ESC.1.111	Escherichia coli	Eau de fontaine	4 j à 4°C + 30 min à -80°C + 10 min à 36°C + 10 min à 51°C	1,1	21	Mesnil Val plage
ESC.1.111	Escherichia coli	Eau de fontaine	4 j à 4°C + 30 min à -80°C + 10 min à 36°C + 10 min à 51°C	1,1	22	Dieppe
ESC.1.113	Escherichia coli	Eau de puits	4 j à 4°C + 30 min à -20°C + 10 min à 36°C + 10 min à 51°C	1,6	48	Plage Saint Maurice (Palavas les flots)
ESC.1.114	Escherichia coli	Eau de puits	4j à 4°C + 10 min à -80°C + 60 min à 36°C	1,1	50	Plage des dunes (Carnon-Plage)
ESC.1.114	Escherichia coli	Eau de puits	4j à 4°C + 10 min à -80°C + 60 min à 36°C	1,1	51	Plage du grand travers
ESC.1.120	Escherichia coli	Eau	30 min à 56°C	1,7	23	Quend
ESC.1.120	Escherichia coli	Eau	30 min à 56°C	1,7	24	Saint Marguerite
ESC.1.122	Escherichia coli	Eau	10 min à -20°C + 7 min à 51°C	1,7	25	Saint Pierre en Port
ESC.1.122	Escherichia coli	Eau	10 min à -20°C + 7 min à 51°C	1,7	26	Veulette sur mer
ESC.1.123	Escherichia coli	Eau	10 min à -20°C + 5 min à 51°C	0,5	27	Charron
ESC.1.123	Escherichia coli	Eau	10 min à -20°C + 5 min à 51°C	0,5	28	La Rochelle
ESC.1.112	Escherichia coli	Effluent secondaire	(30 min à -80°C + 15 min à 55°C) x2	0,9	1	Saint Brevin
ESC.1.112	Escherichia coli	Effluent secondaire	(30 min à -80°C + 15 min à 55°C) x2	0,9	2	Berck
ESC.1.124	Escherichia coli	Eau de rivière	7 min à 51°C	0,6	15	Cayeux sur mer

Appendix 2: Relative accuracy results

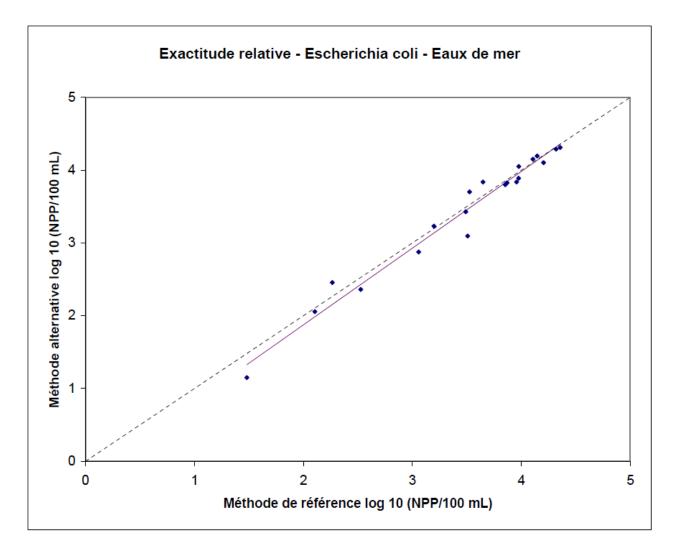
				MA: IDEXX	Colilert 18					MR:NF ISO	9308-3 (2000)			
N°			R1			R2		R1				R2		
éch.	6311		ĸ	NI NI		N2		NPP / 100 mL			NPP	NPP / 100 mL		Log 10
			NPP/100 mL	log 10 (NPP/100mL)	NPP/100 mL	log 10 (NPP/100mL)	NPP	limite inf.	limite sup.	Log 10 (NPP/100 mL)	NPP	limite inf.	limite	(NPP/100 mL)
1	Saint Brevin	ESC.1.112	235.9	2,373	344.8	2,538	160	86	298	2,204	212	123	sup. 366	2,326
2	Berck	ESC.1.112	193,5	2,287	272.3	2,435	195	111	344	2,290	577	401	830	2,761
15	Cayeux sur mer	ESC.1.124	14136	4,150	14136	4,150	11454	7151	18344	4,059	14171	8995	22327	4,151
20	Fécamp	ESC.1.111	135	2,130	96	1,982	208	87	498	2,318	78	20	311	1,892
21	Mesnil Val plage	ESC.1.111	7701	3,887	5794	3,763	7683	4845	12182	3,886	7101	4489	11233	3,851
22	Dieppe	ESC.1.111	7701	<u>3,887</u>	6131	3,788	4628	3132	6841	3,665	4267	2937	6200	3,630
23	Quend	ESC.1.120	796	<u>2,901</u>	706	2,849	1104	816	1494	<u>3,043</u>	1177	873	1587	<u>3,071</u>
24	Saint Marguerite	ESC.1.120	1396	<u>3,145</u>	1106	<u>3,044</u>	3422	2451	4778	<u>3,534</u>	3020	2199	4146	<u>3,480</u>
25	Saint Pierre en Port	ESC.1.122	5172	<u>3,714</u>	4884	3,689	2823	2071	3848	<u>3,451</u>	3951	2761	5653	3,597
26	Veulette sur mer	ESC.1.122	1842	<u>3,265</u>	1565	<u>3,195</u>	1754	1315	2339	<u>3,244</u>	1415	1057	1893	<u>3,151</u>
27	Charron	ESC.1.123	12033	<u>4,080</u>	10462	<u>4,020</u>	16740	10880	25756	<u>4,224</u>	5352	3513	8154	<u>3,729</u>
28	La Rochelle	ESC.1.123	5475	<u>3,738</u>	7270	<u>3,862</u>	7683	4845	12182	<u>3,886</u>	6581	4184	10350	<u>3,818</u>
47	Plage Saint Roch (Palavas les flots)	ESC.1.111	20	<u>1,301</u>	10	<u>1,000</u>	61	23	163	<u>1,785</u>	15	2	106	<u>1,176</u>
48	Plage Saint Maurice (Palavas les flots)	ESC.1.113	2755	<u>3,440</u>	2613	<u>3,417</u>	3225	2329	4465	<u>3,509</u>	2956	2158	4049	<u>3,471</u>
50	Plage des dunes (Carnon-Plage)	ESC.1.114	17329	<u>4,239</u>	14136	<u>4,150</u>	11636	7487	18084	<u>4,066</u>	16740	10880	25756	4,224
51	Plage du grand travers	ESC.1.114	6867	<u>3,837</u>	6867	<u>3,837</u>	9043	5727	14277	<u>3,956</u>	9043	5727	14277	<u>3,956</u>
52	Plage de la Roquille (Agde)	ESC.1.116	12997	<u>4,114</u>	12303	<u>4,090</u>	16740	10880	25756	4,224	15199	9879	23383	<u>4,182</u>
53	Plage de carnon (Carnon-Plage)	ESC.1.117	24196	<u>4,384</u>	17329	4,239	18563	12030	28643	<u>4,269</u>	27726	17088	44987	<u>4,443</u>
54	Plage du Couchant	ESC.1.119	15531	<u>4,191</u>	24196	<u>4,384</u>	20795	13381	32315	<u>4,318</u>	20795	13381	32315	<u>4,318</u>
55	Plage du Point Zero	ESC.1.123	9208	<u>3,964</u>	6488	<u>3,812</u>	8329	5258	13195	<u>3,921</u>	10687	6840	16699	<u>4,029</u>

Exactitude Relative- Eau de mer

Exactitude relative - Escherichia coli - Eaux de mer

	M	léthode de référenc	e		1		Méthode alternative)		י ד	Différence
Echantillon	Répétition 1	Répétition 2	М	SD	Echantillon	Répétition 1	Répétition 2	Μ	SD	T I	Difference
1	2,204	2,326	2,265	0,086	1	2,373	2,538	2,455	0,117	I	0,190
2	2,290	2,761	2,526	0,333	2	2,287	2,435	2,361	0,105	I	-0,165
3	4,059	4,151	4,105	0,065	3	4,150	4,150	4,150	0,000	T I	0,045
4	2,318	1,892	2,105	0,301	4	2,130	1,982	2,056	0,105	T I	-0,049
5	3,886	3,851	3,868	0,024	5	3,887	3,763	3,825	0,087	I	-0,044
6	3,665	3,630	3,648	0,025	6	3,887	3,788	3,837	0,070	I /	0,189
7	3,043	3,071	3,057	0,020	7	2,901	2,849	2,875	0,037	I	-0,182
8	3,534	3,480	3,507	0,038	8	3,145	3,044	3,094	0,072	I	-0,413
9	3,451	3,597	3,524	0,103	9	3,714	3,689	3,701	0,018	I I	0,178
10	3,244	3,151	3,197	0,066	10	3,265	3,195	3,230	0,050]	0,033
11	4,224	3,729	3,976	0,350	11	4,080	4,020	4,050	0,043] /	0,074
12	3,886	3,818	3,852	0,048	12	3,738	3,862	3,800	0,087	I /	-0,052
13	1,785	1,176	1,481	0,431	13	1,301	1,000	1,151	0,213	1	-0,330
14	3,509	3,471	3,490	0,027	14	3,440	3,417	3,429	0,016	I	-0,061
15	4,066	4,224	4,145	0,112	15	4,239	4,150	4,195	0,063	I I	0,050
16	3,956	3,956	3,956	0,000	16	3,837	3,837	3,837	0,000] /	-0,120
17	4,224	4,182	4,203	0,030	17	4,114	4,090	4,102	0,017] /	-0,101
18	4,269	4,443	4,356	0,123	18	4,384	4,239	4,311	0,103] /	-0,045
19	4,318	4,318	4,318	0,000	19	4,191	4,384	4,287	0,136		-0,030
20	3,921	4,029	3,975	0,077	20	3,964	3,812	3,888	0,108	1 I	-0,087
q= n= N=qn=	2	Mx= MEDx= SDbx=	3,478 3,750 0,808 MEDwx = SDwx= rob. SDwx=	0,066 0,170 0,097			My= MEDv= SDby=	3,432 3,812 0,858 MEDwy = SDwy= rob. SDwy=	0,071 0,089 0,105	M= MED=	-0,046 -0,047 Biais

<u>Choi</u>	<u>x de la méthode</u> GMFR				
	R= rob. R=	0,522 1,078			
			Sx=	0,807	
			Sy=	0,850	
r=	0,984				
b=	1,053		Res. SEM=	0,155	
a=	-0,232		Res. SD=	0,219	
S(b)= S(a)=	0,044 0,104	p(t;b=1)= p(t;a=0)=	0,233 0,032	t(b)= t(a)=	1,212 2,221


Répétabilité	Méthode de référence	Méthode alternative
r	0,476	0,248
rob. r	0,273	0,294

Est. y	Dév.
2,155	0,301
2,429	-0,068
4,093	0,058
1,986	0,070
3,843	-0,019
3,611	0,226
2,988	-0,114
3,463	-0,368
3,480	0,221
3,136	0,093
3,957	0.093
3,826	-0,026
1,328	-0,178
3,444	-0.016
4,134	0,060
3,936	-0,099
4,196	-0,094
4,357	-0,045
4,317 3,955	-0,029 -0.067
3,955	-0,067

AFNOR Certification Summary report Colilert-18[®] /Quanti-Tray[®] or Quanti-Tray[®] 2000

V0 February 2024 32 Les points représentés correspondent aux moyennes des répétitions de chaque échaptillon

AFNOR Certification Summary report Colilert-18[®] /Quanti-Tray[®] or Quanti-Tray[®] 2000

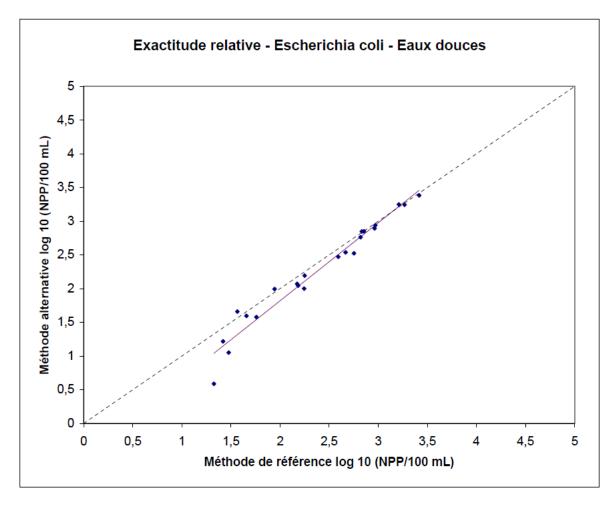
V0 February 2024 33

				MA: IDEXX	Colilert 18					MR:NF ISO 9	308-3 (20	00)		
N°			R1			2			R1		R2			
éch.	eau	Souche			R2		NPP / 100 mL		Log 10	NPP / 100 mL		Log 10		
			NPP/100 mL	log 10 (NPP/100mL)	NPP/100 mL	log 10 (NPP/100mL)	NPP	limite inf.	limite sup.	(NPP/100 mL)	NPP	limite inf.	limite sup.	(NPP/100 mL)
57	Plage bleue Valenton	NC	9,7	0,987	13,1	<u>1,117</u>	30	8	121	<u>1,477</u>	30	8	121	1,477
59	Seine Villeneuve st Georges	NC	203,5	2,309	435,2	2,639	251	151	416	2,400	612	429	874	<u>2,787</u>
60	L'Yerres	NC	104,6	2,020	93,4	<u>1,970</u>	61	23	163	<u>1,785</u>	127	63	253	2,104
61	Lac d'Aydat	NC	2419,6	3,384	2419,6	3,384	2759	2029	3752	<u>3,441</u>	2469	1831	3329	3,393
62	Annet sur marne	NC	32,7	<u>1,515</u>	43,9	1,642	30	8	121	<u>1,477</u>	110	52	231	2,041
64	Noisiel	NC	104,6	2,020	95,9	<u>1,982</u>	215	125	370	2,332	144	75	276	2,158
65	Seine Les Mureaux	NC	16,9	<u>1,228</u>	16,1	<u>1,207</u>	46	15	142	<u>1,663</u>	15	2	106	<u>1,176</u>
66	Etampes	NC	2	0,301	7,5	0,875	15	2	106	<u>1,176</u>	30	8	121	1,477
67	Orge St Chéron	NC	344,8	2,538	325,5	2,513	559	387	808	2,747	574	399	829	2,759
68	Rivière la Rémarde	NC	1299,7	<u>3,114</u>	2419,6	3,384	1712	1284	2285	3,234	1537	1151	2053	<u>3,187</u>
72	Allier	NC	42,8	<u>1,631</u>	36,4	<u>1,561</u>	45	14	140	<u>1,653</u>	46	15	142	<u>1,663</u>
73	Longarisse	NC: Dilué	1119,9	3,049	547,5	2,738	1007	740	1371	3,003	838	606	1157	2,923
74	La Somme	NC: Dilué	410,6	2,613	290,9	2,464	489	333	720	2,689	442	311	684	2,645
75	Aix les bains	NC	155,3	2,191	156,5	2,195	161	87	299	2,207	197	112	346	2,294
76	Meyrieu les étangs	NC	98,7	<u>1,994</u>	124,6	2,096	110	52	231	<u>2,041</u>	213	124	368	2,328
90	La somme	ESC.1.116	816,4	2,912	613	2,787	838	606	1157	<u>2,923</u>	612	429	874	2,787
91	Saint Quentin en Yvelines	ESC.1.117	488,4	2,689	686,7	2,837	591	412	848	<u>2,772</u>	740	529	1034	2,869
92	Villennes sur Seine	ESC.1.119	829,7	2,919	913,9	2,961	901	656	1236	2,955	968	709	1321	2,986
93	Saint Leger en Yvelines	ESC.1.123	113,7	2,056	122,3	2,087	141	73	272	2,149	158	84	295	2,199
94	Troyes	ESC.1.116	727	2,862	686,7	2,837	732	553	1024	<u>2,865</u>	633	445	901	<u>2,801</u>
95	Etampes	ESC.1.117	1553,1	<u>3,191</u>	1986,3	3,298	1554	1164	2075	<u>3,191</u>	2211	1650	2963	3,345
96	La Sioul	NC	43,5	<u>1,638</u>	48	<u>1,681</u>	30	15	141	<u>1,477</u>	45	23	163	<u>1,653</u>

Exactitude Relative - Eau douce

Exactitude relative - Escherichia coli - Eaux douces

	M	léthode de référenc	e				Méthode alternative			Différence
Echantillon	Répétition 1	Répétition 2	M	SD	Echantillon	Répétition 1	Répétition 2	M	SD	Difference
1	1,477	1,477	1,477	0,000	1	0,987	1,117	1,052	0,092	-0,425
2	2,400	2,787	2,593	0,274	2	2,309	2,639	2,474	0,233	-0,120
3	1,785	2,104	1,945	0,225	3	2,020	1,970	1,995	0,035	0.050
4	3,441	3,393	3,417	0.034	4	3,384	3,384	3,384	0,000	-0,033
5	1,477	2,041	1,759	0,399	5	1,515	1,642	1,579	0,090	-0,181
6	2,332	2,158	2,245	0,123	6	2,020	1,982	2,001	0,027	-0,245
7	1,663	1,176	1,419	0,344	7	1,228	1,207	1,217	0,015	-0,202
8	1,176	1,477	1,327	0,213	8	0,301	0,875	0,588	0,406	-0,739
9	2,747	2,759	2,753	0,008	9	2,538	2,513	2,525	0,018	-0,228
10	3,234	3,187	3,210	0,033	10	3,114	3,384	3,249	0,191	0,039
11	1,653	1,663	1,658	0,007	11	1,631	1,561	1,596	0,050	-0,062
12	3,003	2,923	2,963	0,056	12	3,049	2,738	2,894	0,220	-0,069
13	2,689	2,645	2,667	0,031	13	2,613	2,464	2,539	0,106	-0,129
14	2,207	2,294	2,251	0,062	14	2,191	2,195	2,193	0,002	-0,058
15	2,041	2,328	2,185	0,203	15	1,994	2,096	2,045	0,072	-0,140
16	2,923	2,787	2,855	0,097	16	2,912	2,787	2,850	0,088	-0,005
17	2,772	2,869	2,820	0,069	17	2,689	2,837	2,763	0,105	-0,058
18	2,955	2,986	2,970	0,022	18	2,919	2,961	2,940	0,030	-0,030
19	2,149	2,199	2,174	0,035	19	2,056	2,087	2,072	0,022	-0,102
20	2,865	2,801	2,833	0,045	20	2,862	2,837	2,849	0,018	0,016
21	3,191	3,345	3,268	0,108	21	3,191	3,298	3,245	0,076	-0,023
22	1,477	1,653	1,565	0,125	22	1,638	1,681	1,660	0,030	0,095
q= n= N=qn=		Mx= MEDx= SDbx=	2,380 2,422 0,649 MEDwx = SDwx= rob. SDwx=	0,066 0,160 0,097			My= MEDy= SDby=	2,259 2,333 0,757 MEDwy = SDwy= rob. SDwy=	0,061 0,129 0,090	M= -0,120 MED= -0,066 Biais
C	<u>hoix de la métho</u> GMFR R= rob. R=	0,811	Sx=	0.652				Est. y 1,215 2,506 1.756 3,459	Dév. -0,163 -0.033 0.239 -0.075	


	R= rob. R=	0,811 0,926	Sx= Sy=	0,652 0,754	
r= b= a=	0,979 1,157 -0,494		Res. SEM= Res. SD=	0,160 0,226	
S(b)= S(a)=	0,053 0,140	p(t;b=1)= p(t;a=0)=	0,005 0,001	t(b)= t(a)=	2,938 3,526

B (1) 1 10 (Mithadadawiliwaaaa	Mithada altamativa
Répétabilité	Méthode de référence	Méthode alternative
r	0,447	0,363
rob. r	0,272	0,252

Est. y	Dév.
1,215	-0,163
2,506	-0.033
1.756	0,239
3.459	-0.075
1,541	0,037
2,104	-0,103
1,148	0,069
1,041	-0,453
2,691	-0,166
3.220	0.029
1,424	0,172
2,934	-0,041 -0,054
2,592	
2,110	0,083
2.034	0.011 0.040
2,809	-0.006
2,943	-0,008
2,943	0.050
2,784	0,065
3.287	-0.042
1,317	0.343

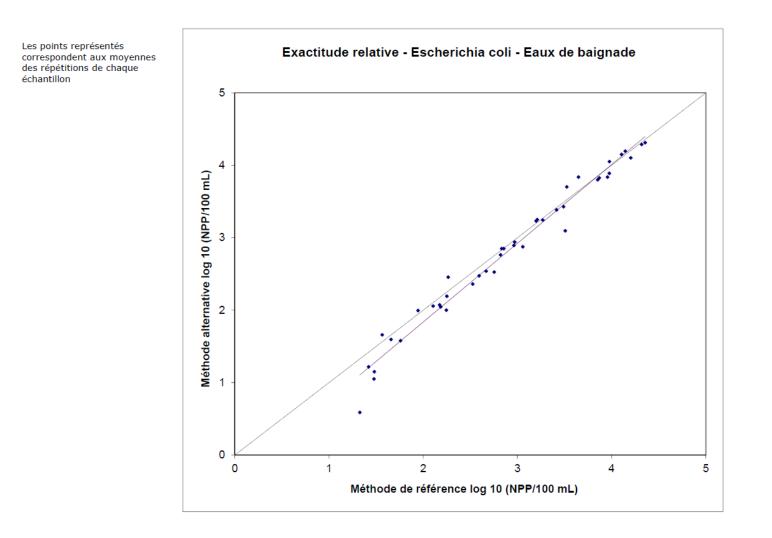
AFNOR Certification Summary report Colilert-18[®] /Quanti-Tray[®] or Quanti-Tray[®] 2000

V0 February 2024 36

Exactitude relative - Escherichia coli - Eaux de baignade (eaux douces + eaux de mer)

	M	léthode de référenc	e				Méthode alternative			0:00
Echantillon	Répétition 1	Répétition 2	M	SD	Echantillon	Répétition 1	Répétition 2	M	SD	Différence
1	2,204	2,326	2,265	0,086	1	2,373	2,538	2,455	0,117	0,190
2	2,290	2,761	2,526	0,333	2	2,287	2,435	2,361	0,105	-0,165
3	4,059	4,151	4,105	0,065	3	4,150	4,150	4,150	0,000	0,045
4	2,318	1,892	2,105	0,301	4	2,130	1,982	2,056	0,105	-0,049
5	3,886	3,851	3,868	0,024	5	3,887	3,763	3,825	0,087	-0,044
6	3,665	3,630	3,648	0,025	6	3,887	3,788	3,837	0,070	0,189
7	3,043	3,071	3,057	0,020	7	2,901	2,849	2,875	0,037	-0,182
8	3,534	3,480	3,507	0,038	8	3,145	3,044	3,094	0,072	-0,413
9	3,451	3,597	3,524	0,103	9	3,714	3,689	3,701	0,018	0,178
10	3,244	3,151	3,197	0,066	10	3,265	3,195	3,230	0,050	0,033
11	4,224	3,729	3,976	0,350	11	4,080	4,020	4,050	0,043	0,074
12	3,886	3,818	3,852	0,048	12	3,738	3,862	3,800	0,087	-0,052
13	1,785	1,176	1,481	0,431	13	1,301	1,000	1,151	0,213	-0,330
14	3,509	3,471	3,490	0,027	13	3,440	3,417	3,429	0,016	-0,050
15	4,066	4,224	4,145	0,112	15	4,239	4,150	4,195	0,063	0,050
15	3,956	3,956	3,956	0,000	15	4,239	3,837	3,837	0,063	-0,120
10	4,224	4,182	4,203	0,030	10	4,114	4,090	4,102	0,000	-0,120
18	4,224	4,102	4,203	0,123	17	4,114	4,090	4,311	0,103	-0,101 -0,045
10	4,269	4,445	4,318	0,123	10	4,304 4,191	4,239	4,287	0,105	-0,045
20					20					
20	3,921	4,029	3,975	0,077	20	3,964 0,987	3,812 1,117	3,888	0,108	-0,087
	1,477			0,000	21			1,052	0,092	-0,425
22 23	2,400	2,787	2,593	0,274	22	2,309	2,639	2,474	0,233	-0,120
	1,785	2,104	1,945	0,225		2,020	1,970	1,995	0,035	0,050
24	3,441	3,393	3,417	0,034	24	3,384	3,384	3,384	0,000	-0,033
25	1,477	2,041	1,759	0,399	25	1,515	1,642	1,579	0,090	-0,181
26	2,332	2,158	2,245	0,123	26	2,020	1,982	2,001	0,027	-0,245
27	1,663	1,176	1,419	0,344	27	1,228	1,207	1,217	0,015	-0,202
28	1,176	1,477	1,327	0,213	28	0,301	0,875	0,588	0,406	-0,739
29	2,747	2,759	2,753	0,008	29	2,538	2,513	2,525	0,018	-0,228
30	3,234	3,187	3,210	0,033	30	3,114	3,384	3,249	0,191	0,039
31	1,653	1,663	1,658	0,007	31	1,631	1,561	1,596	0,050	-0,062
32	3,003	2,923	2,963	0,056	32	3,049	2,738	2,894	0,220	-0,069
33	2,689	2,645	2,667	0,031	33	2,613	2,464	2,539	0,106	-0,129
34	2,207	2,294	2,251	0,062	34	2,191	2,195	2,193	0,002	-0,058
35	2,041	2,328	2,185	0,203	35	1,994	2,096	2,045	0,072	-0,140
36	2,923	2,787	2,855	0,097	36	2,912	2,787	2,850	0,088	-0,005
37	2,772	2,869	2,820	0,069	37	2,689	2,837	2,763	0,105	-0,058
38	2,955	2,986	2,970	0,022	38	2,919	2,961	2,940	0,030	-0,030
39	2,149	2,199	2,174	0,035	39	2,056	2,087	2,072	0,022	-0,102
40	2,865	2,801	2,833	0,045	40	2,862	2,837	2,849	0,018	0,016
41	3,191	3,345	3,268	0,108	41	3,191	3,298	3,245	0,076	-0,023
42	1,477	1,653	1,565	0,125	42	1,638	1,681	1,660	0,030	0,095
q= n= N=qn=		Mx= MEDx= SDbx=	2,903 2,909 0,909 MEDwx = SDwx=	0,066 0,165			My= MEDy= SDby=	2,818 2,862 0,993 MEDwy = SDwy=	0,071 0,112	M= -0,085 MED= -0,058 Biais
			rob. SDwx=	0,097				rob. SDwy=	0,105	
				-,				,	-,	

AFNOR Certification Summary report Colilert-18[®] /Quanti-Tray[®] or Quanti-Tray[®] 2000


<u>Choi</u>	<u>x de la méthode</u> GMFR				
	R=	0,680			
	rob. R=	1,078	Sx= Sy=	0,911 0,990	
r= b= a=	0,988 1,087 -0,337		Res. SEM= Res. SD=	0,157 0,223	
S(b)= S(a)=	0,027 0,117	p(t;b=1)= p(t;a=0)=	0,002 0,005	t(b)= t(a)=	3,226 2,894

Répétabil	ité	Méthode de référence	Méthode alternative
r		0,461	0,313
rob. r		0,273	0,294

Est. y	Dév.
2,125	0,330
2,408	-0,047
4,125	0,025
1,951	0,106
3,868	-0,043
3,628	0,209
2,985	-0,110
3,475	-0,380
3,493	0,208
3,138	0,092
3,985	0,065
3,850	-0,050
1,272	-0,122
3,456	-0,027
4,168	0,027
3,963	-0,126
4,231	-0,129
4,397	-0,086
4,356	-0,069
3,983	-0.095
1,268	-0,216
2,481	-0,008
1,776	0,219
3,376	0,007
1,575	0,004
2,103	-0,103
1,205	0,012
1,105	-0,516
2,655	-0,130
3,152	0,097
1,465	0,132
2,883	0,010
2,562	-0,023
2,109	0,084
2,037	0,007
2,766	0,084
2,728	0,034
2,891	0,049
2,026	0,046
2,742	0,107
3,215	0,030
1,364	0,296

AFNOR Certification Summary report Colilert-18[®] /Quanti-Tray[®] or Quanti-Tray[®] 2000

Appendix 3: Raw results of relative accuracy on 20 used results for fresh waters and on 20 used results for sea waters

			MA: IDEXX Colilert 18				MR:NF ISO 9308-3 (2000)							
N°			R1		_	R2			R1		R2			
éch.	eau		R	CI				NPP / 100 mL			UFC / 100 mL			Log 10 (NPP
			NPP/100 mL	log 10 (NPP/100mL)	NPP/100 mL	log 10 (NPP/100mL)	NPP	limite inf.	limite sup.	Log 10 (NPP /100 mL)	NPP	limite inf.	limite sup.	/100 mL)
59	Seine Villeneuve st Georges	NC	203,5	<u>2,309</u>	435,2	<u>2,639</u>	251	151	416	<u>2,400</u>	612	429	874	<u>2,787</u>
60	L'Yerres	NC	104,6	<u>2,020</u>	93,4	<u>1,970</u>	61	23	163	<u>1,785</u>	127	63	253	<u>2,104</u>
61	Lac d'Aydat	NC	2419,6	<u>3,384</u>	2419,6	<u>3,384</u>	2759	2029	3752	<u>3,441</u>	2469	1831	3329	<u>3,393</u>
62	Annet sur marne	NC	32,7	<u>1,515</u>	43,9	<u>1,642</u>	30	8	121	<u>1,477</u>	110	52	231	<u>2,041</u>
64	Noisiel	NC	104,6	<u>2,020</u>	95,9	<u>1,982</u>	215	125	370	<u>2,332</u>	144	75	276	<u>2,158</u>
65	Seine Les Mureaux	NC	16,9	<u>1,228</u>	16,1	<u>1,207</u>	46	15	142	<u>1,663</u>	15	2	106	<u>1,176</u>
67	Orge St Chéron	NC	344,8	2,538	325,5	<u>2,513</u>	559	387	808	2,747	574	399	829	<u>2,759</u>
68	Rivière la Rémarde	NC	1299,7	<u>3,114</u>	2419,6	<u>3,384</u>	1712	1284	2285	<u>3,234</u>	1537	1151	2053	<u>3,187</u>
72	Allier	NC	42,8	<u>1,631</u>	36,4	<u>1,561</u>	45	14	140	<u>1,653</u>	46	15	142	<u>1,663</u>
73	Longarisse	NC: Dilué	1119,9	<u>3,049</u>	547,5	<u>2,738</u>	1007	740	1371	<u>3,003</u>	838	606	1157	<u>2,923</u>
74	La Somme	NC: Dilué	410,6	<u>2,613</u>	290,9	<u>2,464</u>	489	333	720	2,689	442	311	684	<u>2,645</u>
75	Aix les bains	NC	155,3	<u>2,191</u>	156,5	<u>2,195</u>	161	87	299	<u>2,207</u>	197	112	346	<u>2,294</u>
76	Meyrieu les étangs	NC	98,7	<u>1,994</u>	124,6	<u>2,096</u>	110	52	231	<u>2,041</u>	213	124	368	<u>2,328</u>
90	La somme	ESC.1.116	816,4	2,912	613	<u>2,787</u>	838	606	1157	2,923	612	429	874	<u>2,787</u>
91	Saint Quentin en Yvelines	ESC.1.117	488,4	2,689	686,7	2,837	591	412	848	2,772	740	529	1034	2,869
92	Villennes sur Seine	ESC.1.119	829,7	<u>2,919</u>	913,9	<u>2,961</u>	901	656	1236	<u>2,955</u>	968	709	1321	<u>2,986</u>
93	Saint Leger en Yvelines	ESC.1.123	113,7	<u>2,056</u>	122,3	<u>2,087</u>	141	73	272	<u>2,149</u>	158	84	295	<u>2,199</u>
94	Troyes	ESC.1.116	727	2,862	686,7	2,837	732	553	1024	2,865	633	445	901	<u>2,801</u>
95	Etampes	ESC.1.117	1553,1	<u>3,191</u>	1986,3	<u>3,298</u>	1554	1164	2075	<u>3,191</u>	2211	1650	2963	<u>3,345</u>
96	Sioule	NC	43,5	<u>1,638</u>	48	<u>1,681</u>	30	15	141	<u>1,477</u>	45	23	163	<u>1,653</u>

Exactitude Relative - Eau douce

Exactitude relative - Escherichia coli - Eaux douces

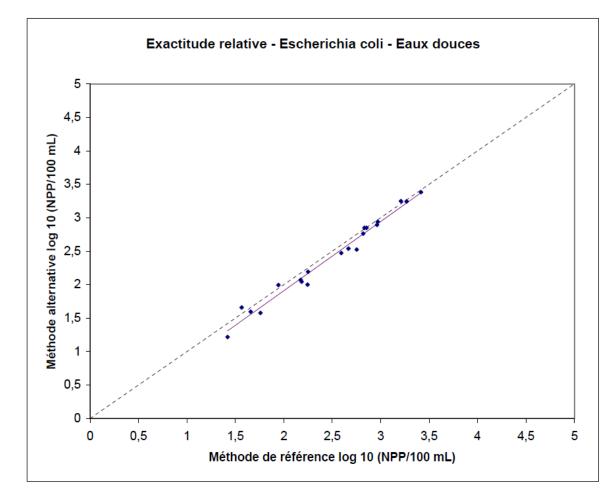
$ \frac{\text{Echardilon}}{1} = \frac{\text{Repetition 1}}{2} = \frac{\text{Repetition 2}}{2} = \frac{\text{M}}{2} = \frac{\text{SO}}{2} = \frac{\text{SO}}{2} = \frac{\text{Chardilon}}{2} = \frac{\text{Repetition 1}}{2} = \frac{\text{Repetition 1}}{2} = \frac{\text{Repetition 2}}{2} = \frac{\text{M}}{2} = \frac{\text{SO}}{2} = \frac{\text{SO}}{2} = \frac{\text{Chardilon}}{2} = \frac{\text{Repetition 1}}{2} = \frac$		M	léthode de référen	e				Méthode alternative	•		Différence
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Echantillon	Répétition 1	Répétition 2	М	SD	Echantillon	Répétition 1	Répétition 2	М	SD	Difference
$\frac{3}{4} - \frac{3}{41} - \frac{3}{393} - \frac{3}{3417} - \frac{0}{0.393} + \frac{3}{3} - \frac{3}{394} - \frac{3}{3$	1	2,400	2,787	2,593	0,274	1	2,309	2,639	2,474	0,233	-0,120
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1,785	2,104	1,945	0,225	2	2,020	1,970	1,995	0,035	0,050
$ \frac{5}{6} - \frac{2,332}{2,332} = \frac{2,158}{1,176} = \frac{2,245}{1,419} = 0.344 = 6 = \frac{2,200}{1,277} = \frac{2,001}{1,217} = 0.015 = 0.027 = \frac{1}{1,217} = \frac{0.027}{1,217} = \frac{0.027}{1,217} = \frac{0.027}{1,217} = \frac{0.027}{1,217} = \frac{0.027}{1,217} = \frac{0.015}{1,218} = \frac{0.245}{1,228} = \frac{1}{1,217} = \frac{0.015}{1,218} = \frac{1}{1,218} = \frac{1}{1,$	3	3,441	3,393	3,417	0,034	3	3,384	3,384	3,384	0,000	-0,033
$ \frac{6}{12} \frac{1}{263} \frac{1}{176} \frac{1}{176} \frac{1}{19} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{124} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{12} \frac{1}{12} \frac{1}{10} \frac{1}{0} \frac{1}{0} \frac{1}{12} \frac{1}{12} \frac{1}{10} \frac{1}{0} \frac{1}{0} \frac{1}{0} \frac{1}{12} \frac{1}{12} \frac{1}{10} \frac{1}{0} \frac{1}{0} \frac{1}{13} \frac{1}{12} \frac$	4	1,477	2,041	1,759	0,399	4	1,515	1,642	1,579	0,090	-0,181
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		2,158			5					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	1,663	1,176	1,419	0,344	6	1,228	1,207	1,217	0,015	-0,202
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7				0,008	7	2,538	2,513		0,018	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										0,072	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2,955									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		2,149	2,199	2,174	0,035		2,056	2,087	2,072	0,022	-0,102
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0,108		3,191	3,298	3,245	0,076	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1,477	1,653	1,565	0,125	20	1,638	1,681	1,660	0,030	0,095
GMFR R= 0,616 rob. R= 0,645 Sx= 0,599 Sy= 0,619 r= 0,989 R= 0,645 Sx= 0,599 Sx= 0,599 Sy= 0,619 R= 0,645 Sx= 0,599 Sx= 0,599 Sx= 0,619 Control Control C	n=	2	MEDx=	2,630 0,596 MEDwx = SDwx=	0,160			MEDy=	2,499 0,623 MEDwy = SDwy=	0,099	MED= -0,060
	<u>C</u>	GMFR R= rob. R=	0,616						2.523 1,852 3,374 1,661 2,163 1,310	-0,049 0,143 0,010 -0,082 -0,163 -0,092	
				Res. SEM=	0,094			F	2,688 3.161	-0,163 0,088	

	R= rob. R=	0,616 0,645	Sx= Sγ=	0,599 0,619	
r= b= a=	0,989 1,034 -0,158		Res. SEM= Res. SD=	0,094 0,133	
S(b)= S(a)=	0,036 0,080	p(t;b=1)= p(t;a=0)=	0,355 0,056	t(b)= t(a)=	0,9 1,9

	1,550
	2,905
	2,600
0,937	2,169
1,969	2,101
	2,793
	2,758
	2,913
	2,089
	2,771
native	3,220
	1,460

Répétabilité	Méthode de référence	Méthode alternative
r	0,449	0,277
rob. r	0,272	0,175

Normec	
Abiolab AdGène	


0,088

-0,01 -0.0 0,024 0,056 0,005 0,027

0,078 0,024 0,200

3,161 1,556

AFNOR Certification Summary report Colilert-18® /Quanti-Tray® or Quanti-Tray® 2000

Les points représentés correspondent aux moyennes des répétitions de chaque échaptillen

Exactitude relative - Escherichia coli - Eaux de baignade (eaux douces + eaux de mer) Suppression of 2 results under the LOD of the reference method

	N	léthode de référence	e				Méthode alternative				Différen
Echantillon	Répétition 1	Répétition 2	М	SD	Echantillon	Répétition 1	Répétition 2	М	SD		Différence
1	2,204	2,326	2,265	0,086	1	2,373	2,538	2,455	0,117		0,190
2	2,290	2,761	2,526	0,333	2	2,287	2,435	2,361	0,105		-0,165
3	4,059	4,151	4,105	0,065	3	4,150	4,150	4,150	0,000		0,045
4	2,318	1,892	2,105	0,301	4	2,130	1,982	2,056	0,105		-0,049
5	3,886	3,851	3,868	0,024	5	3,887	3,763	3,825	0,087		-0,044
6	3,665	3,630	3,648	0,025	6	3,887	3,788	3,837	0,070		0,189
7	3,043	3,071	3,057	0,020	7	2,901	2,849	2,875	0.037		-0,182
8	3,534	3,480	3,507	0,038	8	3,145	3,044	3,094	0,072		-0,413
9	3,451	3,597	3,524	0,103	9	3,714	3,689	3,701	0,018		0,178
10	3,244	3,151	3,197	0,066	10	3,265	3,195	3,230	0,050		0,033
11	4,224	3,729	3,976	0,350	11	4,080	4,020	4,050	0,043		0,074
12	3,886	3,818	3,852	0,048	12	3,738	3,862	3,800	0,087		-0,052
13	1,785	1,176	1,481	0,431	13	1,301	1,000	1,151	0,213		-0,330
14	3,509	3,471	3,490	0,027	14	3,440	3,417	3,429	0,016		-0,061
15	4,066	4,224	4,145	0,112	15	4,239	4,150	4,195	0,063	F	0,050
16	3,956	3,956	3,956	0,000	16	3,837	3,837	3,837	0,000	F	-0,120
17	4,224	4,182	4,203	0,030	17	4,114	4,090	4,102	0,017		-0,101
18	4,269	4,443	4,356	0,123	18	4,384	4,239	4,311	0,103		-0,045
19	4,318	4,318	4,318	0,000	19	4,191	4,384	4,287	0,136		-0,030
20	3,921	4,029	3,975	0,077	20	3,964	3,812	3,888	0,108		-0,087
21	2,400	2,787	2,593	0,274	22	2,309	2,639	2,474	0,233		-0,120
22	1,785	2,104	1,945	0,225	23	2,020	1,970	1,995	0,035		0,050
23	3,441	3,393	3,417	0,034	24	3,384	3,384	3,384	0,000	-	-0,033
24	1,477	2,041	1,759	0,399	25	1,515	1,642	1,579	0,090		-0,181
25	2,332	2,158	2,245	0,123	26	2,020	1,982	2,001	0,027		-0,245
26	1,663	1,176	1,419	0,344	27	1,228	1,207	1,217	0,015		-0,202
27	2,747	2,759	2,753	0,008	29	2,538	2,513	2,525	0,018	F	-0,228
28	3,234	3,187	3,210	0,033	30	3,114	3,384	3,249	0,191		0,039
29	1,653	1,663	1,658	0,007	31	1,631	1,561	1,596	0,050		-0,062
30	3,003	2,923	2,963	0,056	32	3,049	2,738	2,894	0,220		-0,069
31	2,689	2,645	2,667	0,031	33	2,613	2,464	2,539	0,106		-0,129
32	2,207	2,294	2,251	0,062	34	2,191	2,195	2,193	0,002		-0,058
33	2,041	2,328	2,185	0,203	35	1,994	2,096	2,045	0,072		-0,140
34	2,923	2,787	2,855	0,097	36	2,912	2,787	2,850	0,088	-	-0,005
35	2,772	2,869	2,820	0,069	37	2,689	2,837	2,763	0,105	F	-0,058
36	2,955	2,986	2,970	0,022	38	2,919	2,961	2,940	0,030		-0,030
37	2,149	2,199	2,174	0,035	39	2,056	2,087	2,072	0,022	F	-0,102
38	2,865	2,801	2,833	0,045	40	2,862	2,837	2,849	0,012	l F	0,016
39	3,191	3,345	3,268	0,108	40	3,191	3,298	3,245	0,010	F	-0,023
40	1,477	1,653	1,565	0,125	42	1,638	1,681	1,660	0,030		0,095
	10	M	0.079		-	-		2.018			0.000
	40	Mx=	2,978				My=	2,918		M=	-0,060
n=		MEDx=	2,967				MEDy=	2,884		MED=	-0,055
N=qn=	80	SDbx=	0,864	0.000			SDby=	0,905	0.000		Biais
			MEDwx =	0,066				MEDwy =	0,066		
			SDwx=	0,165				SDwy=	0,094		

AFNOR Certification Summary report Colilert-18[®] /Quanti-Tray[®] or Quanti-Tray[®] 2000

rob. SDwx=

0,097

rob. SDwy=

0,098

<u>Choi</u>	<u>x de la méthode</u> GMFR				
	R= rob. R=	0,568 1,009			
		_,	Sx= Sy=	0,867 0,902	
r= b= a=	0,991 1,040 -0,180		Res. SEM= Res. SD=	0,125 0,177	
S(b)= S(a)=	0,023 0,091	p(t;b=1)= p(t;a=0)=	0,084 0,051	t(b)= t(a)=	1,750 1,982

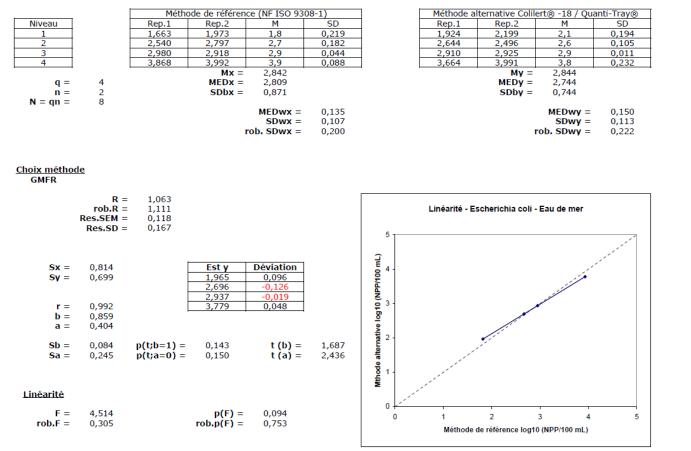
Répétabilité	Méthode de référence	Méthode alternative
r	0,463	0,263
rob. r	0,273	0,275

Ect. v	Dáu
Est. y	Dév.
2,176 2,447	0,279 -0,086
	-
4,091	0,060
2,010	0,047 -0,020
3,844	0,222
3,615	
3,000	-0,125
3,468	-0,374 0,216
3,486	
3,146	0,084
3,956	0,094
3,827	-0,027
1,360	-0,210
3,450	-0,022
4,132	0,063
3,936	-0,099
4,192	-0,090
4,351	-0,040
4,312	-0,024
3,955	-0,067
2,518	-0,044
1,843	0,152
3,374	0,009
1,650	-0,071
2,156	-0,155
1,296	-0,079
2,684	-0,159
3,159	0,089
1,545	0,052
2,902	-0,009
2,595	-0,056
2,161	0,032
2,093	-0,048
2,790	0,060
2,754	0,009
2,910	0,030
2,081	-0,010
2,767	0,082
3,220	0,025
1,448	0,212

AFNOR Certification Summary report Colilert-18[®] /Quanti-Tray[®] or Quanti-Tray[®] 2000

Les points représentés correspondent aux moyennes des répétitions de chaque échantillon

Appendix 4: Linearity results


Linéarité- Résultats bruts

		IDEXX Colilert 18-Quanti-tray 2000 (NPP/100mL)					NF ISO 9308-3 (2000) (NPP/100mL)						
Souche	Matrice	R1		R2		R1			R2				
		NPP /100mL	log10 (NPP/100mL)	NPP /100mL	log10 (NPP/100mL)	NPP /100mL	log10 (NPP/100mL)	limite inf.	limite sup.	NPP /100mL	log10 (NPP/100mL)	limite inf.	limite sup.
		84	1,924	158	2,199	46	1,663	15	142	94	1,973	42	208
ESC.1.119	Eau de mer	441	2,644	313	2,496	347	2,540	223	540	627	2,797	440	892
230.1.119	Lau de mei	813	2,910	842	2,925	955	2,980	699	1305	828	2,918	599	1145
		4611	3,664	9804	3,991	7383	3,868	4845	12182	9826	3,992	6254	15439

		IDEXX Colilert 18-Quanti-tray 2000 (NPP/100mL)					NF ISO 9308-3 (2000) (NPP/100mL)						
Souche Matrice		R1		R2		R1			R2				
		NPP /100mL	log10 (NPP/100mL)	NPP /100mL	log10 (NPP/100mL)	NPP /100mL	log10 (NPP/100mL)	limite inf.	limite sup.	NPP /100mL	log10 (NPP/100mL)	limite inf.	limite sup.
		77	1,887	95,9	1,982	77	1,886	32	186	94	1,973	42	208
ESC.1.112	Eau douce	328	2,516	416	2,619	619	2,792	434	882	509	2,707	348	744
230.1.112		960	2,982	1250	3,097	1100	3,041	520	2310	1790	3,253	990	3230
		4360	3,639	3130	3,496	5590	3,747	3870	8080	6900	3,839	4900	9720

Linéarité - Escherichia coli - Eau de mer

Appendix 5: LOD / LOQ results

Limite de détection (LOD) et Limite de quantification (LOQ)

Résu	<u>tats bruts</u>				
	Contamination en				
N°	UFC/100 mL		Jaune	Fluo	NPP
	(taux réel)				
0A		grd puits	0	0	0
~~		petits puits	0	0	•
OB		grd puits	0	0	0
		petits puits	0	0	
0C		grd puits	0	0	0
	0	petits puits	0	0	-
0D		grd puits	0	0	0
		petits puits	0	0	
0E		grd puits	0	0	0
		petits puits grd puits	0	0	
OF		petits puits	0	0	0
		grd puits	0	ō	
0,2A		petits puits	0	0	• 0
		grd puits	1	1	
0,2B		petits puits	0	0	· <u>1</u>
		grd puits	ŏ	ō	
0,2C		petits puits	ő	ŏ	0
0.05	0,2	grd puits	0	0	-
0,2D		petits puits	ō	0	0
0.25		grd puits	0	0	0
0,2E		petits puits	0	0	. 0
0.25		grd puits	0	0	0
0,2F		petits puits	0	0	. 0
0 54		grd puits	1	1	1
0,5A		petits puits	0	0	1
0,5B		grd puits	0	0	0
0,50		petits puits	0	0	0
0,5C		grd puits	1	1	· <u>1</u>
0,00	0,4	petits puits	0	0	±
0,5D		grd puits	0	0	0
5,55		petits puits	0	0	<u> </u>
0,5E		grd puits	0	0	0
		petits puits	0	0	
0,5F		grd puits	0	0	0
_		petits puits	0	0	
1A		grd puits	0	0 0	0
		petits puits grd puits	1	1	
1B		petits puits	0	0	1
		grd puits	0	0	
1C		petits puits		1	1
	1,5	grd puits	ō	ō	-
1D		petits puits	ő	õ	• 0
4.5		grd puits	0	0	0
1E		petits puits	0	0	0
1F		grd puits	0	0	<u>1</u>
11-		petits puits	1	1	<u>+</u>
ЗA		grd puits	1	1	1
SA		petits puits	0	0	1
3B		grd puits	<u>5</u>	5	5,2
55		petits puits	0	0	512
3C		grd puits	2	2	2
50	3	petits puits	0	0	-
3D	-	grd puits	2	2	<u>2</u>
		petits puits	0	0	=
3E		grd puits	1	1	<u>1</u>
		petits puits	0	0	-
3F		grd puits	1	1	1
		petits puits	0	0	-

Limite de détection (LOD) et Limite de quantification (LOQ)

Calculs statistiques

Niveau (UFC/100mL)	Nombre d'échantillons positifs	Ecart-type (So)	Biais (Xo)
0	0	0,000	0
0,2	1	0,408	0
0,4	2	0,516	0
1,5	3	0,548	0,5
3	6	1,627	1,5

	Formules	Valeur obtenue
Niveau critique (LC)	1,65 So +Xo	1,40
Limite de détection (LOD)	3,3 So+Xo	2,31
Limite de quantification (LOQ)	10 So + Xo	5,98

Appendix 6: Selectivity results

Inclusivity

						Quanti-tray	®
Image: Constraint of the second se	N٥	Code	Code Origin		Bon		lts
1 ESC.1.1 CIP \$4127 100 2 + + 2 ESC.1.11 Fountain water 40 1 + + 3 ESC.1.112 Secondary effluent 38 1 + + 4 ESC.1.113 Well water 38 1 + + 5 ESC.1.113 Well water 60 1 + + 6 ESC.1.115 Well water 34 1 + + 7 ESC.1.116 Well water 48 1 + + 7 ESC.1.117 Well water 48 1 + + 8 ESC.1.117 Well water 30 1 + + 9 ESC.1.119 Tap water 70 2 + + 10 ESC.1.120 English, III-80BS 33 1 + + 11 ESC.1.121 EPA QC, 031591 40 2 + + 12 ESC.1.123 ERA, 4921:40 36 1				<u>100mL)</u>	кер.		E. coli detection
2 ESC.1.111 Fountain water 40 $\frac{2}{2}$ $\frac{+}{2}$ $\frac{+}{2}$ $\frac{+}{2}$ 3 ESC.1.112 Secondary effluent 38 $\frac{1}{2}$ $\frac{+}{2}$ $\frac{+}{2}$ 4 ESC.1.113 Well water 38 $\frac{1}{2}$ $\frac{+}{2}$ $\frac{+}{2}$ 5 ESC.1.113 Well water 38 $\frac{1}{2}$ $\frac{+}{2}$ $\frac{+}{2}$ 6 ESC.1.114 Well water 60 $\frac{1}{2}$ $\frac{+}{2}$ $\frac{+}{2}$ 6 ESC.1.115 Well water 34 $\frac{1}{2}$ $\frac{+}{2}$ $\frac{+}{2}$ 7 ESC.1.116 Well water 48 $\frac{2}{2}$ $\frac{+}{2}$ $\frac{+}{2}$ 8 ESC.1.117 Well water 30 $\frac{1}{2}$ $\frac{+}{2}$ $\frac{+}{2}$ 9 ESC.1.120 English, III-80BS 33 $\frac{1}{2}$ $\frac{+}{2}$ $\frac{+}{2}$ 10 ESC.1.121 EPA QC, 031591 40 $\frac{2}{2}$ $\frac{+}{2}$ $\frac{+}{2}$ 11 ESC.1.122 </td <td>1</td> <td>ESC 1.1</td> <td>CIP 54127</td> <td>100</td> <td></td> <td></td> <td></td>	1	ESC 1.1	CIP 54127	100			
2 ESC.1.111 Fountain water 40 2 + + 3 ESC.1.112 Secondary effluent 38 1 + + 4 ESC.1.113 Well water 38 1 + + 5 ESC.1.113 Well water 60 2 + + 6 ESC.1.115 Well water 34 1 + + 7 ESC.1.116 Well water 48 1 + + 8 ESC.1.117 Well water 30 1 + + 9 ESC.1.119 Tap water 70 1 + + 10 ESC.1.120 English, III-80BS 33 1 + + 11 ESC.1.121 EPA QC, 031591 40 1 + + 11 ESC.1.122 EPA QC, 082688 35 2 + + 12 ESC.1.123 ERA, 4921:40 36 1 + + 13 ESC.1.23 Dairy industry 58 1 + </td <td>-</td> <td>200111</td> <td>011 0 112,</td> <td>100</td> <td>-</td> <td>-</td> <td></td>	-	200111	011 0 112,	100	-	-	
3 ESC.1.112 Secondary effluent 38 1 + + 4 ESC.1.113 Well water 38 1 + + 5 ESC.1.114 Well water 60 1 + + 6 ESC.1.115 Well water 34 2 + + 7 ESC.1.115 Well water 34 1 + + 7 ESC.1.116 Well water 48 1 + + 8 ESC.1.117 Well water 30 2 + + 9 ESC.1.119 Tap water 70 1 + + 10 ESC.1.120 English, III-80BS 33 1 + + 11 ESC.1.122 EPA QC, 031591 40 1 + + 11 ESC.1.122 EPA QC, 082688 35 1 + + 12 ESC.1.123 ERA, 4921:40 36 1 + + 13 ESC.1.124 4166:80 Thames Isolate #216 40 1	2	ESC.1.111	Fountain water	40			
3 ESC.1.112 Secondary effluent 38 2 + + 4 ESC.1.113 Well water 38 1 + + 5 ESC.1.114 Well water 60 1 + + 6 ESC.1.115 Well water 34 1 + + 7 ESC.1.115 Well water 34 1 + + 7 ESC.1.116 Well water 48 1 + + 8 ESC.1.117 Well water 30 2 + + 9 ESC.1.119 Tap water 70 1 + + 10 ESC.1.120 English, III-80BS 33 2 + + 11 ESC.1.121 EPA QC, 031591 40 1 + + 12 ESC.1.122 EPA QC, 082688 35 1 + + 13 ESC.1.123 ERA, 4921:40 36 1 + + 14 ESC.1.31 Dairy industry 58 1 +							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	ESC.1.112	Secondary effluent	38			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	ESC.1.113	Well water	38			
S ESC.1.114 Well water 60 2 + + 6 ESC.1.115 Well water 34 1 + + 7 ESC.1.116 Well water 48 1 + + 8 ESC.1.116 Well water 48 1 + + 8 ESC.1.117 Well water 30 1 + + 9 ESC.1.119 Tap water 70 1 + + 10 ESC.1.120 English, III-80BS 33 1 + + 11 ESC.1.121 EPA QC, 031591 40 1 + + 12 ESC.1.122 EPA QC, 082688 35 1 + + 13 ESC.1.123 ERA, 4921:40 36 1 + + 14 ESC.1.124 4166:80 Thames Isolate #216 40 1 + + 15 ESC.1.31 Dairy industry 58 1 + + 16 ESC.1.37 Pulp waste recycled 32 2 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-						
6 ESC.1.115 Well water 34 1 + + 7 ESC.1.116 Well water 48 1 + + 8 ESC.1.117 Well water 30 1 + + 9 ESC.1.117 Well water 30 1 + + 9 ESC.1.119 Tap water 70 1 + + 10 ESC.1.120 English, III-80BS 33 1 + + 11 ESC.1.121 EPA QC, 031591 40 1 + + 12 ESC.1.122 EPA QC, 082688 35 1 + + 13 ESC.1.123 ERA, 4921:40 36 1 + + 14 ESC.1.124 4166:80 Thames Isolate #216 40 1 + + 14 ESC.1.31 Dairy industry 58 1 + + 15 ESC.1.31 Scallop 100 2 + + 17 ESC.1.37 Pulp waste recycled 32 1	5	ESC.1.114	Well water	60			
Production Production </td <td>~</td> <td>5004445</td> <td></td> <td></td> <td></td> <td>+</td> <td>+</td>	~	5004445				+	+
7 ESC.1.116 Well water 48 2 + + 8 ESC.1.117 Well water 30 1 + + 9 ESC.1.119 Tap water 70 1 + + 10 ESC.1.120 English, III-80BS 33 1 + + 11 ESC.1.121 EPA QC, 031591 40 1 + + 12 ESC.1.121 EPA QC, 082688 35 1 + + 12 ESC.1.122 EPA QC, 082688 35 1 + + 13 ESC.1.123 ERA, 4921:40 36 1 + + 14 ESC.1.124 4166:80 Thames Isolate #216 40 1 + + 14 ESC.1.31 Dairy industry 58 1 + + + 15 ESC.1.31 Scallop 100 1 + + + 17 ESC.1.37 Pulp waste recycled 32 2 + + + 18 ESC.1.4	6	ESC.1.115	Well water	34	2	+	+
8 ESC.1.117 Well water 30 1 + + 9 ESC.1.119 Tap water 70 1 + + 10 ESC.1.120 English, III-80BS 33 1 + + 11 ESC.1.120 English, III-80BS 33 1 + + 11 ESC.1.121 EPA QC, 031591 40 1 + + 12 ESC.1.122 EPA QC, 082688 35 1 + + 13 ESC.1.123 ERA, 4921:40 36 1 + + 14 ESC.1.124 4166:80 Thames Isolate #216 40 1 + + 15 ESC.1.31 Dairy industry 58 1 + + 16 ESC.1.37 Pulp waste recycled 32 + + + 18 ESC.1.39 Raw shrimp 44 1 + + 19 ESC.1.41 ATCC 8739 30	7	FCC 1 116	Well water	40	1	+	+
8 ESC.1.117 Well water 30 2 + + 9 ESC.1.119 Tap water 70 1 + + + 10 ESC.1.120 English, III-80BS 33 1 + + + 11 ESC.1.120 English, III-80BS 33 1 + + + 11 ESC.1.121 EPA QC, 031591 40 1 + + + 12 ESC.1.122 EPA QC, 082688 35 1 +	/	ESC.1.110	well water	48	2	+	+
9 ESC.1.119 Tap water 70 1 + + 10 ESC.1.120 English, III-80BS 33 1 + + 11 ESC.1.120 English, III-80BS 33 1 + + 11 ESC.1.121 EPA QC, 031591 40 1 + + 12 ESC.1.122 EPA QC, 082688 35 1 + + 12 ESC.1.122 EPA QC, 082688 35 1 + + 13 ESC.1.123 ERA, 4921:40 36 1 + + 14 ESC.1.124 4166:80 Thames Isolate #216 40 1 + + 15 ESC.1.31 Dairy industry 58 1 + + 16 ESC.1.31 Scallop 100 1 + + 17 ESC.1.37 Pulp waste recycled 32 1 + + 18 ESC.1.39 Raw shrimp 44	Q	ESC 1 117	Well water	30	_	+	+
9 ESC.1.119 Tap water 70 2 + + 10 ESC.1.120 English, III-80BS 33 $\frac{1}{2}$ + + 11 ESC.1.121 EPA QC, 031591 40 $\frac{1}{2}$ + + 11 ESC.1.121 EPA QC, 031591 40 $\frac{1}{2}$ + + 12 ESC.1.122 EPA QC, 082688 35 $\frac{1}{2}$ + + 13 ESC.1.123 ERA, 4921:40 36 $\frac{1}{2}$ + + 14 ESC.1.124 4166:80 Thames Isolate #216 40 $\frac{1}{2}$ + + 14 ESC.1.31 Dairy industry 58 $\frac{1}{1}$ + + 15 ESC.1.31 Scallop 100 $\frac{1}{2}$ + + 16 ESC.1.37 Pulp waste recycled 32 $\frac{1}{2}$ + + 18 ESC.1.39 Raw shrimp 44 $\frac{1}{2}$ + + 19 ESC.1.41 Bakery industry 80 $\frac{1}{2}$ + + <td>0</td> <td>230.1.117</td> <td>Well Water</td> <td></td> <td>+</td> <td>+</td>	0	230.1.117	Well Water			+	+
10 ESC.1.120 English, III-80BS 33 1 + + 11 ESC.1.121 EPA QC, 031591 40 1 + + 12 ESC.1.121 EPA QC, 082688 35 1 + + 13 ESC.1.123 ERA, 4921:40 36 1 + + 14 ESC.1.124 4166:80 Thames Isolate #216 40 1 + + 14 ESC.1.124 4166:80 Thames Isolate #216 40 1 + + 15 ESC.1.31 Dairy industry 58 1 + + 16 ESC.1.31 Scallop 100 1 + + 17 ESC.1.37 Pulp waste recycled 32 2 + + 18 ESC.1.39 Raw shrimp 44 1 + + 19 ESC.1.41 ATCC 8739 30 1 + + 20 ESC 1.41 Bakery industry 80 <td>٩</td> <td>ESC 1 119</td> <td>Tan water</td> <td>70</td> <td></td> <td>+</td> <td>+</td>	٩	ESC 1 119	Tan water	70		+	+
10 ESC.1.120 English, III-80BS 33 2 + + 11 ESC.1.121 EPA QC, 031591 40 1 + + 12 ESC.1.122 EPA QC, 082688 35 1 + + 13 ESC.1.122 EPA QC, 082688 35 1 + + 13 ESC.1.123 ERA, 4921:40 36 1 + + 14 ESC.1.124 4166:80 Thames Isolate #216 40 1 + + 14 ESC.1.3 Dairy industry 58 1 + + 15 ESC.1.31 Scallop 100 1 + + 16 ESC.1.37 Pulp waste recycled 32 1 + + 18 ESC.1.39 Raw shrimp 44 1 + + 19 ESC.1.41 Bakery industry 80 1 + + 20 ESC.1.41 Bakery industry 80 1 + +	1	250.1.115		,,,		+	+
11 ESC.1.121 EPA QC, 031591 40 1 + + 12 ESC.1.121 EPA QC, 082688 35 1 + + 12 ESC.1.122 EPA QC, 082688 35 1 + + 13 ESC.1.123 ERA, 4921:40 36 1 + + 14 ESC.1.124 4166:80 Thames Isolate #216 40 1 + + 14 ESC.1.31 Dairy industry 58 1 + + 15 ESC.1.31 Scallop 100 1 + + 17 ESC.1.37 Pulp waste recycled 32 1 + + 18 ESC.1.39 Raw shrimp 44 1 + + 19 ESC.1.41 Bakery industry 80 1 + - 20 ESC.1.41 Bakery industry 80 1 + +	10	ESC 1.120	English, III-80BS	33			
11 ESC.1.121 EPA QC, 031591 40 2 + + 12 ESC.1.122 EPA QC, 082688 35 1 + + 13 ESC.1.123 ERA, 4921:40 36 1 + + 14 ESC.1.123 ERA, 4921:40 36 1 + + 14 ESC.1.124 4166:80 Thames Isolate #216 40 2 + + 15 ESC.1.3 Dairy industry 58 1 + + 16 ESC.1.31 Scallop 100 1 + + 17 ESC.1.37 Pulp waste recycled 32 1 + + 18 ESC.1.39 Raw shrimp 44 1 + + 19 ESC.1.4 ATCC 8739 30 1 + - 20 ESC 1.41 Bakery industry 80 1 + +		200.11120	English, III 0000				
12 ESC.1.122 EPA QC, 082688 35 1 + + 13 ESC.1.123 ERA, 4921:40 36 1 + + 14 ESC.1.124 4166:80 Thames Isolate #216 40 1 + + 15 ESC.1.3 Dairy industry 58 1 + + 16 ESC.1.31 Scallop 100 1 + + 17 ESC.1.37 Pulp waste recycled 32 1 + + 18 ESC.1.39 Raw shrimp 44 1 + + 19 ESC.1.41 Bakery industry 80 1 + +	11	ESC.1.121	EPA OC, 031591	40			
12 ESC.1.122 EPA QC, 082688 35 2 + + 13 ESC.1.123 ERA, 4921:40 36 1 + + 14 ESC.1.124 4166:80 Thames Isolate #216 40 1 + + 14 ESC.1.124 4166:80 Thames Isolate #216 40 1 + + 15 ESC.1.3 Dairy industry 58 1 + + 16 ESC.1.31 Scallop 100 1 + + 17 ESC.1.37 Pulp waste recycled 32 2 + + 18 ESC.1.39 Raw shrimp 44 1 + + 19 ESC.1.41 Bakery industry 80 1 + + 20 ESC.1.41 Bakery industry 80 1 + +							
13 ESC.1.123 ERA, 4921:40 36 1 + + 14 ESC.1.124 4166:80 Thames Isolate #216 40 1 + + 15 ESC.1.3 Dairy industry 58 1 + + 16 ESC.1.31 Scallop 100 1 + + 17 ESC.1.37 Pulp waste recycled 32 1 + + 18 ESC.1.39 Raw shrimp 44 1 + + 19 ESC.1.41 Bakery industry 80 1 + +	12	ESC.1.122	EPA QC, 082688	35			
13 ESC.1.123 ERA, 4921:40 36 2 + + 14 ESC.1.124 4166:80 Thames Isolate #216 40 1 + + + 15 ESC.1.3 Dairy industry 58 1 + + + 16 ESC.1.31 Scallop 100 1 + + + 17 ESC.1.37 Pulp waste recycled 32 1 + + + 18 ESC.1.39 Raw shrimp 44 1 + + + 19 ESC.1.41 Bakery industry 80 1 + + +							
14 ESC.1.124 4166:80 Thames Isolate #216 40 1 + + 15 ESC.1.3 Dairy industry 58 1 + + 16 ESC.1.31 Scallop 100 1 + + 17 ESC.1.37 Pulp waste recycled 32 1 + + 18 ESC.1.39 Raw shrimp 44 1 + + 19 ESC.1.4 ATCC 8739 30 1 + - 20 ESC.1.41 Bakery industry 80 1 + +	13	ESC.1.123	ERA, 4921:40	36			
14 ESC.1.124 4166:80 Thames Isolate #216 40 2 + + 15 ESC.1.3 Dairy industry 58 1 + + 16 ESC.1.31 Scallop 100 1 + + 17 ESC.1.37 Pulp waste recycled 32 1 + + 18 ESC.1.39 Raw shrimp 44 1 + + 19 ESC.1.4 ATCC 8739 30 1 + - 20 ESC.1.41 Bakery industry 80 1 + +							
15 ESC.1.3 Dairy industry 58 1 + + 16 ESC.1.31 Scallop 100 1 + + 16 ESC.1.31 Scallop 100 1 + + 17 ESC.1.37 Pulp waste recycled 32 1 + + 18 ESC.1.39 Raw shrimp 44 1 + + 19 ESC.1.4 ATCC 8739 30 1 + - 20 ESC 1.41 Bakery industry 80 1 + +	14	ESC.1.124	4166:80 Thames Isolate #216	40			
15 ESC.1.3 Dairy industry 58 2 + + 16 ESC.1.31 Scallop 100 1 + + + 17 ESC.1.37 Pulp waste recycled 32 1 + + + 18 ESC.1.39 Raw shrimp 44 1 + + + 19 ESC.1.4 ATCC 8739 30 1 + - - 20 ESC 1.41 Bakery industry 80 1 + + +							
16 ESC.1.31 Scallop 100 1 + + 17 ESC.1.37 Pulp waste recycled 32 1 + + 17 ESC.1.37 Pulp waste recycled 32 1 + + 18 ESC.1.39 Raw shrimp 44 1 + + 19 ESC.1.4 ATCC 8739 30 1 + - 20 ESC 1.41 Bakery industry 80 1 + +	15	ESC.1.3	Dairy industry	58			
16 ESC.1.31 Scallop 100 2 + + 17 ESC.1.37 Pulp waste recycled 32 1 + + + 18 ESC.1.39 Raw shrimp 44 1 + + + 19 ESC.1.4 ATCC 8739 30 1 + - 20 ESC 1.41 Bakery industry 80 1 + +		500 1 01	o "				
17 ESC.1.37 Pulp waste recycled 32 1 + + 18 ESC.1.39 Raw shrimp 44 1 + + 19 ESC.1.4 ATCC 8739 30 1 + - 20 ESC 1.41 Bakery industry 80 1 + +	16	ESC.1.31	Scallop	100	_		
17 ESC.1.37 Pulp waste recycled 32 2 + + 18 ESC.1.39 Raw shrimp 44 1 + + 19 ESC.1.4 ATCC 8739 30 1 + - 20 ESC 1.41 Bakery industry 80 1 + +	17	FCC 1 27	Dula waata waavalad	20			
18 ESC.1.39 Raw snimp 44 2 + + 19 ESC.1.4 ATCC 8739 30 1 + - 20 ESC 1.41 Bakery industry 80 1 + +	1/	ESC.1.37	Puip waste recycled	32		+	+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	FCC 1 20	Daw shrings		1	+	+
19 ESC.1.4 ATCC 8739 30 2 + - 20 ESC 1.41 Bakery industry 80 1 + +	18	ESC.1.39	Kaw shrimp	44	2	+	+
2 + - 20 ESC 1.41 Bakery industry 80 1 + +	10	ESC 1.4	ATCC 9720	20	1	+	-
20 ESC 1 41 Bakery industry 80	19	ESC.1.4	ATCC 8739	30	2	+	-
	20	ESC 1 41	Bakeny industry	80		+	+
	20	230.1.41	bakery muusury		2	+	+

Exclusivity

N				Level	Ģ)uanti-Tra	ву®
0	Code	Micro-organism	Origin	(<u>CFU/</u> 100mL)	Rep	Res Coli- forms	E.coli
1	SHI.1.1	Shigella flexneri	CIP 82.48T	7E+04	1 2	0	0
2	ENTC.1. 3	Enterococcus faecalis	CIP 103214	7E+04	1 2	0	0
3	ENTC.3.	Enterococcus hirae	CIP 58.55	3E+04	1 2	0	0
4	PRO.1.1	Proteus mirabilis	CIP 103181	7E+04	1 2	0	0
5	PSE1.4	Pseudomonas aeruginosa	Fountain water	4E+04	1 2	0	0
6	PSE.1.5	Pseudomonas aeruginosa	Fountain water	8E+04	1 2	0	0
7	PSE.2.1	Pseudomonas fluorescens	CIP 69.13T	7E+04	1 2	0	0
8	SAL.1.9	Salmonella enterica Braenderup	Food workshop env.	7E+04	1 2	0	0
9	STA.1.5	Staphylococcus aureus	Surface water	7E+04	1 2	0	0
10	XAN.1.1	Xanthomonas campestris	Air conditioning evaporator	7E+04	1 2	0	0
11	AER.1.1	Aeromonas hydrophyla	Well water	2E+04	1 2	0	0
12	AER.1.2	Aeromonas hydrophyla/sobria1	Well water	3E+04	1 2	0	0
13	MIC.2.1	Micrococcus spp	Contact Petri dish	4E+04	1 2	0	0
14	PROV.1. 1	Providencia stuartii	HPA RM	4E+04	1 2	0	0
15	ALC.1.1	Alcaligenes xylosoxydans	Dairy industry	6E+04	1 2	0	0
16	SAL.1.99	Salmonella enterica Ohio	Food workshop env.	3E+04	1 2	0	0
17	STA.2.2	Staphylococcus epidermidis 2	Contact Petri dish	4E+04	1 2	0	0
18	PSE.1.6	Pseudomonas aeruginosa	Fountain water	3E+04	1 2	0	0
19	STA.4.1	Staphylococcus piscifermentans	Air conditioning evaporator	1E+04	1 2	0	0
20	PSE.1.1	Pseudomonas aeruginosa	ATCC 19429	4E+04	1 2	0	0
21	ENTC.1. 2	Enterococcus faecalis	ATCC 33186	2E+04	1 2	0	0
22	STA.3.1	Staphylococcus haemolyticus	Contact Petri dish	5E+04	1 2	0	0
23	AER.1.4	Aeromonas hydrophila	Japan 146	4E+04	1 2	0	0
24	ENTC.4. 1	Enterococcus avium	4416:88 German Entercocci E156	3E+04	1 2	0	0
25	ENTC.1. 4	Enterococcus faecalis	10B Thames Water, UK	1E+04	1 2	0	0
26	ENTC.2. 2	Enterococcus faecium	2A:48-1 Environmental	2E+04	1 2	0	0
27	ENTC.5. 1	Enterococcus gallinarum	EMP060, 4569:6	1E+04	1 2	0	0
28	PRO.1.2	Proteus mirabilis	292-2 (Chen Vet Micro)	5E+04	1 2	0	0
29	STA.1.6	Staphylococcus aureus	7612503004	7E+04	1 2	0	0
30	PSE.1.7	Pseudomonas aeruginosa	C6, NH effluent, Suppl. LNB 4609	1E+04	1 2	0	0

Appendix 7: Enumeration of culturable microorganisms

Laboratoire	Résultat (UFC/mL) à 22°C	Résultat (UFC/mL) à 36°C
А	12	7
В	88	2
С	24	4
D	3	2
E	<1	2
F	5	2
G	26	2
н	11	2
I	46	3
J	120	1
К	63	6
L	244	4
М	18	4
Ν	94	<1 *
0	<1	<1

Appendix 8: Interlaboratory study results

Results in MPN/100 mL

Niveau 0										
		Méth	ode de référ	ence - Echa	antillons		Mé	thode alternat	ive - Echant	tillons
		4			8			4	8	
Laboratoire	NPP / 100 mL	Limite inférieur	Limite supérieure	NPP / 100 mL	Limite inférieur	Limite supérieure	NPP	NPP /100ml (NPP x facteur de dilution)	NPP	NPP /100ml (NPP x facteur de dilution)
Α	<15	/	/	<15	/	/	<1	<10	<1	<10
B	<15	/	/	<15	/	/	<1	<10	<1	<10
C	<15	/	/	<15	/	/	<1	<10	<1	<10
D	<15	/	/	<15	/	/	<1	<10	<1	<10
E	<15	/	/	<15	/	/	<1	<10	<1	<10
F	<15	/	/	<15	/	/	<1	<10	<1	<10
G	<15	/	/	<15	/	/	<1	<10	<1	<10
H	<15	/	/	<15	/	/	<1	<10	<1	<10
I	<15	/	/	<15	/	/	<1	<10	<1	<10
J	<15	/	/	<15	/	/	<1	<10	<1	<10
K	<15	/	/	<15	/	/	<1	<10	<1	<10
L	<15	/	/	<15	/	/	<1	<10	<1	<10
M	<15	/	/	<15	/	/	<1	<10	<1	<10
N	<15	/	/	<15	/	/	<1	<10	<1	<10
0	<15	/	/	<15	/	/	<1	<10	<1	<10
Expert	<15	/	/	<15	/	/	<1	<10	<1	<10

....

					Niveau	1				
		Méth	ode de référ	rence - Echa	Méthode alternative - Echantillons					
Laboratoire	6			7			6		7	
	NPP / 100 mL	Limite inférieur	Limite supérieure	NPP / 100 mL	Limite inférieur	Limite supérieure	NPP	NPP /100ml (NPP x facteur de dilution)	NPP	NPP /100ml (NPP x facteur de dilution)
A	92	41	206	93	42	207	8,6	86	10,8	108
B	127	63	253	109	52	230	1	10	4,1	41
C	94	42	208	94	42	208	7,5	75	6,3	63
D	127	63	253	<15	/	/	4,1	41	6,3	63
E	110	52	231	15	2	106	5,2	52	6,3	63
F	46	15	142	61	23	163	6,3	63	4,1	41
G	77	32	186	160	86	298	9,8	98	13,5	135
H	15	2	106	46	15	142	5,1	51	5,2	52
I	125	62	251	61	23	163	9,7	97	3,0	30
J	61	23	163	61	23	163	5,2	52	5,2	52
K	94	42	208	93	42	207	4,0	40	4,1	41
L	94	42	208	144	75	276	5,2	52	12,2	122
M	197	63	253	46	15	142	9,5	95	10,9	109
N	94	42	208	46	15	142	6,2	62	7,4	74
0	127	63	253	126	63	252	11,9	119	10,9	109
Expert	126	63	252	30	8,0	121	4,0	40	8,4	84

					Niveau	2						
		Méthode de référence - Echantillons						Méthode alternative - Echantillons				
Laboratoire	1			3				1	3			
	NPP / 100 mL	Limite inférieur	Limite supérieure	NPP / 100 mL	Limite inférieur	Limite supérieure	NPP	NPP /100ml (NPP x facteur de dilution)	NPP	NPP /100ml (NPP x facteur de dilution)		
Α	697	486	981	332	212	521	49,6	496	48,7	487		
В	529	363	769	434	290	650	33,1	331	40,4	404		
С	332	212	521	438	293	655	38,9	389	45,7	457		
D	177	98	321	465	314	689	40,8	408	37,4	374		
E	234	138	394	434	290	650	42,5	425	36,9	369		
F	195	111	344	393	258	598	25,9	259	23,8	238		
G	415	275	626	393	258	598	29,2	292	48,2	482		
Н	585	408	840	465	314	689	38,7	387	33,1	331		
I	654	462	927	500	341	733	39,3	393	26,9	269		
J	412	272	622	375	244	575	39,3	393	30,9	309		
К	344	221	537	504	344	738	75,4	754	53,0	530		
L	606	424	866	640	451	909	35	350	52,9	529		
M	476	322	703	580	403	833	23,1	231	51,2	512		
N	559	387	808	640	451	909	30,5	305	23,1	231		
0	585	408	840	668	473	944	49,6	496	43,7	437		
Expert	697	479	953	559	387	808	61,6	616	45,9	459		

Niveau 3

					Niveau							
	Méthode de référence - Echantillons							Méthode alternative - Echantillons				
Laboratoire	2			5			2		5			
	NPP / 100 mL	Limite inférieur	Limite supérieure	NPP / 100 mL	Limite inférieur	Limite supérieure	NPP	NPP /100ml (NPP x facteur de dilution)	NPP	NPP /100ml (NPP x facteur de dilution)		
Α	1049	773	1423	882	642	1213	59,1	591	71,2	712		
В	858	622	1182	489	333	720	80,9	809	77,1	771		
С	773	555	1075	851	617	1174	73,3	733	51,2	512		
D	647	456	917	838	606	1157	58,1	581	73,8	738		
E	514	352	751	1007	740	1371	58,1	581	84,7	847		
F	690	490	972	805	580	1116	55,6	556	59,4	594		
G	580	403	833	943	690	1290	75,4	754	57,3	573		
Н	759	544	1058	759	544	1058	73,3	733	58,1	581		
I	1305	973	1751	742	531	1037	72,7	727	66,3	663		
J	918	670	1258	543	375	783	90,6	906	88,4	884		
K	1136	841	1535	838	606	1157	90,9	909	101,7	1017		
L	1007	740	1371	968	709	1321	77,6	776	93,3	933		
М	882	642	1213	872	633	1200	98,8	988	133,4	1334		
N	882	642	1213	968	709	1321	73,3	733	62,2	622		
0	1567	1174	2092	893	650	1227	83,6	836	79,4	794		
Expert	633	445	901	1034	761	1405	101,0	1010	83,3	833		

AFNOR Certification Summary report Colilert-18[®] /Quanti-Tray[®] or Quanti-Tray[®] 2000

