

AFNOR CERTIFICATION VALIDATION STUDY HQS PCR ESCHERICHIA COLI 0157:H7 TEST SYSTEM

SYNTHESIS REPORT

HQS PCR ESCHERICHIA COLI 0157:H7 TEST SYSTEM - S.R.(V0) SEPTEMBER 2010

This report of analysis concerns only objects subjected to analysis. Its reproduction is authorized only in the form of complete photographic facsimile. It contains 22 pages (except annexes).

Only certain assays reported in this document are covered by the accreditation of the Section Laboratory of COFRAC. They are identified by the symbol (*).

Assays performed at ISHA: 25, avenue de la République 91300 Massy

Manufacturer: ADNucleis SAS

30 Chemin des Mouilles

69 290 GREZIEU LA VARENNE

FRANCE

Expert laboratory : I. S. H. A.

25, avenue de la République

91300 MASSY - FRANCE

For the AFNOR Certification validation of the HQS PCR Escherichia coli O157:H7 test kit with confirmation according to the NF EN ISO 16140 standard

SUMMARY

1. Introduction	4
1.1. Validation referential	4
1.2. Alternative method	4
1.3. Scope of application	5
1.4. Reference method (*)	5
2. Methods comparison study	6
2.1. Relative accuracy, relative specificity and relative sensitivity	
2.1.1. Number and nature of samples	6
2.1.2. Artificial contamination of samples	7
2.1.3. Confirmation protocol	
2.1.4. Results	7
2.1.5. Calculation of relative accuracy (AC), relative specificity	(SP) and relative
sensitivity (SE)	8
2.1.6. Analysis of discordant results	8
2.2. Relative detection level	9
2.2.1. Matrices	9
2.2.2. Spiking protocol	9
2.2.3. Results	10
2.3. Inclusivity / exclusivity (selectivity)	10
2.3.1. Test protocols	10
2.3.2. Results	11
2.3.3. Conclusion	11
3. Collaborative study	12
3.1. Collaborative study implementation	12
3.1.1. Participating laboratories	12
3.1.2. Listeria monocytogenes absence in the matrix	12
3.1.3. Strain stability in the matrix	12
3.1.4. Samples preparation and spiking	12
3.1.5. Samples labelling	13
3.1.6. Samples shipping	13
3.1.7. Samples reception and analysis	13
3.2. Results	13
3.2.1. Temperature and state of the samples	13
3.2.2. Total viable counts	14
3.2.3. Expert laboratory results	14
3.2.4. Participating laboratories results	14
3.2.5. Specificity (SP) and sensitivity (SE) calculations	15
3.2.6. Relative accuracy calculations	16
3.2.7. Discordant results analysis	16
3.3. Interpretation	
3.3.1. Accordance	
3.3.2. Concordance	<u>1</u> 7
3.3.3. Concordance odds ratio	
3.3.4. AC, SP, SE comparison	18
4. Practicability	19
F. Complysion	
5. Conclusion	22

Annexes

Annex 1: selectivity strains list

1. Introduction

1.1. Validation referential

The aim of this validation study is to evaluate the performance of the alternative method against the reference method according to the ISO 16140 referiantial. It consists in a preliminary study and a collaborative study.

1.2. Alternative method

The principle of the HQS PCR $E.\ coli$ O157:H7 test system lies on real-time Polymerase Chain Reaction (PCR) technology. The system provides rapid detection of $Escherichia\ coli$ O157:H7 by specifically identifying the DNA sequence after an enrichment time in PCRone® broth. The SYBR® Green system is used with this method and the sequence amplified is located between the genes coding for the RNA 16S and RNA 23S (16S-23S rDNA ITS).

The protocol of the method is showed in figure 1.

STEP 1: ENRICHMENT

X g (mL) sample + 9X mL PCRone [®] broth pre-warmed at 37°C Incubate at (37±1)°C for 12 to 24 hours

STEP 2: DNA EXTRACTION

Thaw the extarction barrettes and centrifuge them for 30 s at 300 g Transfer 100 μ L of enriched broth in an extraction tube of a microplate Close the microplate, place it in a thermocycler and begin the extraction step

STEP 3: DNA PURIFICATION

Purify the DNA by transferring it in a purification column and by applying two washings

STEP 4: DNA AMPLIFICATION

Transfer 3 μL of extract in the amplification pins Close and spin-dry pins during 1 minute in 300 g Deposit the extraction microplate in the thermocycleur and launch the detection.

STEP 5: READING AND INTERPRETATION OF THE RESULTS

Check the different controls, read the dissociation temperature Tm and compare it at the Tm interval

If the temperature is in the Tm interval the result is presumed positive

STEP 6: CONFIRMATION

The confirmation consists in an isolation of enriched PCRone $^{\$}$ broth according to the reference method

Figure 1: alternative method protocol

1.3. Scope of application

The alternative method was tested for two food categories: meat products and dairy products.

1.4. Reference method(*)

The standard NF EN ISO 16654 (2001), horizontal method for the detection of *E. coli* O157:H7 was applied. The protocol of this method is shown in figure 2.

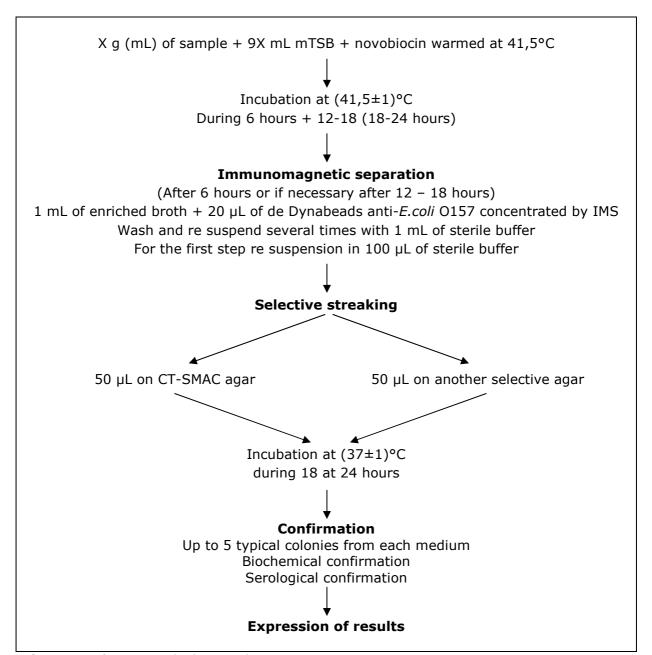


Figure 2: reference method protocol

2. Comparative study

The following characteristics are studied during the preliminary study:

- Relative accuracy (AC), relative specificity (SP) and relative sensitivity (SE)
- Relative detection level of the alternative method and the reference method
- Selectivity of the alternative method
- Practicability of the alternative method

2.1. Relative accuracy, relative specificity, relative sensitivity

The relative accuracy is the degree of correspondence between the response obtained by the reference method and the response obtained by the alternative method on identical samples.

The relative specificity is the ability of the alternative method to not detect the target microorganism when it is not detected by the reference method.

The relative sensitivity is the ability of the alternative method to detect the analyte when it is detected by the reference method.

The objective of this study is to evaluate the performance of both methods on contaminated and non-contaminated samples.

2.1.1. Number and nature of samples

The following categories are studied: meat products and dairy products.

A number of 121 samples was analysed. Types of products are indicated in table 1.

Category	Туре	Number of positive*	Number of negative	Total
	Raw meat	15	15	30
Meat	Cooked meat	4	0	4
products	Delicatessen	4	9	13
products	Meat dishes	8	6	14
	Total	31	30	61
	Raw milk cheese	15	6	21
Doing	Pasteurized milk cheese	7	10	17
Dairy products	Yoghurts and puddings	2	9	11
products	Milks and creams	6	5	11
	Total	30	30	60
	Total	61	60	121

Table 1: nature and number of analysed samples (*=positive results by either method)

2.1.2. Artificial contamination of samples

Naturally contaminated samples are seldom available. Therefore, artificial contaminations of food samples were almost performed. For spiking, several strains were stressed using different treatments and the stress intensity was evaluated (logarithmic difference between enumeration on non selective agar –TSA- and selective agar –CT-SMAC).

3 naturally contaminated samples were analysed, so 95,1% of positive samples are the results of artificial spikings.

2.1.3. Confirmation protocol

The confirmation of presumed positive results obtained by the alternative method was realized from the enriched PCRone[®] broth according to the reference method after 24 hours of incubation

2.1.4. Results

Each sample was analysed once by the alternative method and once by the reference method. Table 2 presents paired results of both methods for incubation of 12 hours of AM and table 3 presents paired results of both methods for incubation of 24 hours of AM.

Incubation AM broth: 12 hours

Category	Response	Reference method ^(*) positive (R+)	Reference method ^(*) négative (R-)
Meat products	Alternative method positive (A+)		PD=0
Meat products	Alternative method négative (A-)	ND=1 including 0 PPND	NA=30 including 0 PPNA
Dairy products	Alternative method positive (A+)	PA=27	PD=1
Daily products	Alternative method négative (A-)	ND=2 including 0 PPND	NA=30 including 0 PPNA
All products	Alternative method positive (A+)	PA=57	PD=1
All products	Alternative method négative (A-)	ND=3 including 0 PPND	NA=60 Including 0 PPNA

Table 2: results of relative accuracy for both methods (PA: positive agreement, NA: negative agreement, ND: negative deviation, PD: positive deviation, PP: presumed positive before confirmation, A+: confirmed positive, A-: negative immediately and negative after confirmation when presumed positive)

Incubation AM broth: 24 hours

Category	Response	Reference method ^(*) positive (R+)	Reference method ^(*) négative (R-)
Meat products	Alternative method positive (A+)	PA=30	PD=0
Meat products	Alternative method négative (A-)	ND=1 including 0 PPND	NA=30 including 0 PPNA
Dairy products	Alternative method positive (A+)	PA=29	PD=1
Daily products	Alternative method négative (A-)	ND=0 including 0 PPND	NA=30 including 0 PPNA
All products	Alternative method positive (A+)	PA=59	PD=1
All products	Alternative method négative (A-)	ND=1 including 0 PPND	NA=60 Including 0 PPNA

Table 3: results of relative accuracy for both methods (PA: positive agreement, NA: negative agreement, ND: negative deviation, PD: positive deviation, PP: presumed positive before confirmation, A+: confirmed positive, A-: negative immediately and negative after confirmation when presumed positive)

2.1.5. Calculation of relative accuracy (AC), relative specificity (SP) and relative sensitivity (SE)

For all products categories, these results permit to calculate the relative accuracy, relative specificity and relative sensitivity according to NF EN ISO standard. Results are indicated in table 4 and table 5.

Incubation AM broth: 12 hours

Category	PA	NA	ND	PD	N	Relative accuracy AC [(PA+NA)/N]	N+ PA+ND	Relative sensitivity SE [PA/N+]	N- NA+PD	Relative specificity SP [NA/N-]
Meat products	30	30	1	0	61	98,4 %	31	96,8 %	30	100,0 %
Dairy products	27	30	2	1	60	95,0 %	29	93,1 %	31	96,8 %
All products	57	60	3	1	121	96,7 %	60	95,0 %	61	98,4 %

Table 4: relative accuracy, relative specificity and relative sensitivity of alternative method (PA: positive agreement, NA: negative agreement, ND: negative deviation, PD: positive deviation, AC = $(PA+NA)/N \times 100\%$, SE = $PA/N+ \times 100\%$, SP = $NA/N- \times 100\%$, N+ = PA+ND and N- = NA+PD)

Incubation AM broth: 24 hours

Category	PA	NA	ND	PD	N	Relative accuracy AC [(PA+NA)/N]	N+ PA+ND	Relative sensitivity SE [PA/N+]	N- NA+PD	Relative specificity SP [NA/N-]
Meat products	30	30	1	0	61	98,4 %	31	96,8 %	30	100,0 %
Dairy products	29	30	0	1	60	98,3 %	29	100,0 %	31	96,8 %
All products	59	60	1	1	121	98,3 %	60	98,3 %	61	98,4 %

Table 5: relative accuracy, relative specificity and relative sensitivity of alternative method (PA: positive agreement, NA: negative agreement, ND: negative deviation, PD: positive deviation, AC = $(PA+NA)/N \times 100\%$, SE = $PA/N+ \times 100\%$, SP = $NA/N- \times 100\%$, N+ = PA+ND and N- = NA+PD)

Criteria values in percent are shown in table 4.

	Alternative method 12 hours	Alternative method 24 hours
Relative accuracy	96,7 %	98,3 %
Relative sensitivity	95,0 %	98,3 %
Relative specificity	98,4 %	98,4 %

 Table 6: AC, SE and SP in percent for alternative method

Sensitivity of both methods was recalculated considering all confirmed positive (including alternative method positive deviations). Results are shown in table 5.

	Alternative method (PA+PD)/(PA+PD+ND) 12 hours	Alternative method (PA+PD)/(PA+PD+ND) 24 hours	Reference method (PA+ND)/(PA+PD+ND)
Sensitivity	95,1 %	98,4 %	98,4 %

Table 7: sensitivity of both methods including all confirmed positive

2.1.6. Analysis of discordant results

Discordant results are examined according to annex F of NF EN ISO 16140 standard, with Y as the number of discordant results and m as the smallest of the two values of PD and ND.

For 12 hours of incubation, Y = 4 and for 24 hours incubation, Y = 2. In both cases Y < 6, so the two methods are equivalent.

Negative deviations

-Sample numbers: RD 2673

A positive result is obtained by the reference method whereas a negative result is obtained by the alternative method from the 2 incubation times. However the isolation of the PCRone[®] broth on selective agar medium didn't allow finding typical colonies. This result is due to the difference of sampling between both methods, no cell of *E. coli* O157 may have been taken in the sampling for the reference method.

-Sample numbers RD 2717 / RD 2732

A positive result is obtained by the reference method whereas a negative result is obtained by the alternative method from 12 hours of incubation. However the 24 hours of incubation gives positive results.

Positive deviations

-Sample numbers: RD 2740

A positive result is obtained by the alternative medium whereas a negative result is obtained by the reference method. Due to the difference of sampling between both methods, no cell of *E. coli* O157 may have been taken in the sampling for the reference method.

2.2. Relative detection level

The objective of this study is to determine the level of contamination for which less than 50% of the responses obtained are positive and that for which more than 50% of the responses obtained are positive.

2.2.1. Matrices

A couple "matrix-strain" was studied in parallel with the reference method and the alternative method for each category. The total viable count of each matrix was enumerated. Characteristics of the strain and the matrix are shown in table 8.

Matrix	Strain	ISHA code	Origin
Minced meat	E. coli O157:H7	ESC 1.109	Ham
Raw milk	E. coli O157:H7	ESC 1.93	CIP 105917

 Table 8: "matrix-strain" couples of the relative detection level

2.2.2. Spiking protocol

Six levels of contamination were tested including the negative control.

Six replicates for each level of contamination were inoculated and analysed by the reference method and the alternative method.

As the two methods have no common step, 12 test portions of 25 g were prepared for each level of contamination and individually inoculated with a calibrated bacterial suspension. Bacterial suspension of about 10 cells per mL was prepared. From this initial suspension, volumes of 0.9 mL, 0.3 mL and 0.1 mL were used to spike 25 g of sample respectively for the 3 first levels. In parallel, the initial suspension was diluted ratio $\frac{1}{2}$ and $\frac{1}{4}$ in order to inoculate the lower levels of contamination with 0.1 mL. For all the levels of contamination, homogeneity of the inoculums was checked by enumeration on 30 TSA Petri dishes. Then, the confidence interval was determined according to Poisson law.

2.2.3. Results

Tables 9 and 10 present the relative detection level for each method.

		Relative detection level according to the Spearman-Kärber model (cells in 25 g)					
Souche	Matrice	Reference method ^(*)	Alternative method 12 h	Alternative method 24 h			
ESC 1.109	Minced meat	0,899 [0,530 ; 1,525]	1,153 [0,680 ; 1,956]	1,011 [0,596 ; 1,715]			
ESC 1.93	Raw milk	0,814 [0,554 ; 1,196]	1,255 [0,776 ; 2,030]	1,011 [0,625 ; 1,634]			

Table 9: relative detection level (3 significant numbers)

		Relative detection level according to the Spearman-Kärber model(cells in 25 g)						
Souche	Matrice	Reference method ^(*)	Alternative method 12 h	Alternative method 24 h				
ESC 1.109	Minced meat	0,9 [0,5 ; 1,5]	1,2 [0,7 ; 2,0]	1,0 [0,6 ; 1,7]				
ESC 1.93	Raw milk	0,8 [0,6 ; 1,2]	1,3 [0,8 ; 2,0]	1,0 [0,6 ; 1,6]				

Table 10: relative detection level (1 significant number)

The alternative and the reference method show similar detection levels. The detection limit obtained with the alternative method is comprised between 0.7 and 2.0 CFU in 25 g.at 12 hours and is comprised between 0.6 and 1.7 CFU in 25 g. at 24 hours The detection limit obtained with the reference method is comprised between 0.5 and 1.5 CFU in 25 g.

2.3. Inclusivity / exclusivity (selectivity)

The objective of this study is to test:

- -the inclusivity: the detection of the target microorganism from a wide range of strains,
- -the exclusivity: the lack of interference from a relevant range of non-target microorganisms.

According to the requirements of NF EN ISO 16140, 50 strains of *E. coli* O 157:H7 and 33 non-target strains were tested. A list of the strains figures in annex 1.

2.3.1. Test protocols

Inclusivity

Each *E. coli* O157:H7 strain was cultivated twice before inoculation in PCRone broth (about 1 to 100 CFU/225 mL). The complete protocol of alternative method was applied with the minimum time of incubation.

Exclusivity

Each non-target strain was cultivated twice before inoculation in growth medium (Tryticase Soy Broth) with a level of contamination expected to occur in the food matrices (about 10⁵ CFU/mL). After 24 hours of incubation, the HQS test was performed. In cases where the target strains or non-target strains results were unexpected to interpret by the alternative method, the analysis was conducted once again in parallel with the alternative method and the reference method (complete protocol).

2.3.2. Results

The 50 *E. coli* O157:H7 strains tested were detected by the alternative method. No non target strain was detected by the alternative method.

2.3.3. Conclusion

The selectivity of the method is satisfactory.

3. Collaborative study

The main object of the collaborative study is to determine the variability of the results obtained by different laboratories analysing identical samples and to compare these results within the framework of the comparative study of the methods.

3.1. Collaborative study implementation

3.1.1. Participating laboratories

The collaborative study was realized by the expert laboratory and twelve participating laboratories.

3.1.2. E. coli O157:H7 absence in the matrix

Before spiking, the absence of *E. coli* O157:H7 was verified in the batch of minced meat used according to the reference method.

3.1.3. Strain stability in the matrix

The strain stability in minced meat matrix was evaluated for 4 days at $(4\pm2)^{\circ}$ C. The strain used was *E. coli* O157:H7 (ISHA code: ESC.1.93) CIP strain number 105917.

Inoculation of 10 cells in 25 g minced meat. The samples were analysed at D0, D+1, D+2 and D+3 by the reference method and by the alternative method.

The results are summarized in table 11.

Day	Alternative method	Reference method
D0	Presence in 25 g	Presence in 25 g
D+1	Presence in 25 g	Presence in 25 g
D+2	Presence in 25 g	Presence in 25 g
D+3	Presence in 25 a	Presence in 25 a

Table 11: results of the stability study of the strain ESC.1.93 in minced meat

The results show that the $E.\ coli$ O157: H7 strain used is stable for 3 days at $(4\pm2)^{\circ}$ C in the minced meat matrix.

3.1.4. Samples preparation and spiking

The matrix was inoculated with the target strain suspension to obtain 3 contamination levels:

-L0: 0 cell in 25 g

-L1: 3 cells in 25 g

-L2: 30 cells in 25 g

The matrix was distributed at 25 g in sterile bags. Every bag was individually spiked and homogenized. Eight samples per level, per laboratory and per method were prepared. Each laboratory received 48 samples to analyse, 1 sample to quantify the endogenous microflora and 1 water sample containing a temperature probe.

The results of the enumerations of the TVC, the target levels and the real levels of contamination are presented in table 12.

Matrix	Total viable count (CFU/mL)	Target level (cells / 25 g)	Real level (cells / 25 g)	Confidence interval
Minand		0	0	0
Minced meat	$2,0.10^5$	3	4	[0;8]
meat		30	37	[25 ; 49]

Table 12: target level, real level and TVC of the matrix

3.1.5. Samples labeling

The labelling of the bags was realized as follows: a code to identify the laboratory: from A to L (cf. table 13) and a code to identify each sample, only known by the expert laboratory. The samples and the temperature control vials (water sample with a temperature probe) were stored at 4°C before shipping.

Contamination level	Sample code
LO	1/2/7/8/11/12/14/24
L1	4/6/10/13/15/17/19/21
L2	3/5/9/16/18/20/22/23

Table 13: sample code by contamination level

3.1.6. Samples shipping

The samples were shipped in a coolbox the 7th of December 2009.

3.1.7. Samples reception and analysis

The coolboxes were received the 8th of December 2009 by all the participating laboratories. The control temperature was recorded upon receipt of the package and the temperature probe sent to the expert laboratory. The samples were analysed the same day. The expert laboratory concurrently analysed a set of samples under the same conditions with both methods.

3.2. Results

3.2.1. Temperature and state of the samples

The temperature readings upon reception and the state of the samples are shown in table 14.

Laboratory	Temperature (°C)	State of the samples
Α	6,9	Correct
В	3,1	Correct
С	4,3	Correct
D	6,0	Correct
E	4,1	Correct
F	3,6	Correct
G	6,5	Correct
Н	6,6	Correct
I	3,6	Correct
J	4,2	Correct
K	2,3	Correct
L	6,7	Correct

Table 14: temperature and state of the samples upon reception

The temperature measurements are inferior to 8.4°C for all the laboratories. The analysis of thermal profiles is shown in table 15.

Labora	tory	Α	В	С	D	E	F	G	Н	I	J	K	L
Tempera-	Mean	1,8	2,4	2,1	2,5	1,7	2,6	1,9	2,0	1,9	3,0	1,7	2,1
ture (°C)	SD	0,2	0,9	2,1	0,7	0,3	0,3	0,4	0,4	1,6	0,4	0,3	0,8

Table 15: data of the temperature probes for the transportation time of samples

The thermal profiles analysis indicates for all laboratories mean temperatures comprises between 1.7 and 3.0°C.

3.2.2. Total viable counts

For the whole laboratories, the total viable counts at 30° C vary between $2,5.10^{7}$ and $>10^{5}$ CFU/mL.

3.2.3. Expert laboratory results

The results obtained by the expert laboratory are summarized in table 16.

Contamination level	Alternative method	Reference method (*)
L0	0/8	0/8
L1	8/8	8/8
L2	8/8	8/8

Table 16: positive results obtained by expert laboratory by both methods

The results are consistent with those expected.

3.2.4. Participating laboratories results

The results are summarized in tables 17 and 18

• Alternative method results

	Contamination level			
Laboratory	LO	L1	L2	
Α	0/8	8/8	8/8	
В	0/8	8/8	8/8	
С	0/8	8/8	8/8	
D	0/8	8/8	8/8	
E	0/8	8/8	8/8	
F	0/8	8/8	8/8	
G	0/8	8/8	8/8	
Н	0/8	7/8	8/8	
I	0/8	5/8	8/8	
J	0/8	6/8	8/8	
K	0/8	7/8	8/8	
L	0/8	8/8	8/8	

Table 17: alternative method positive results for all laboratories

Only the laboratory I reported inhibitions of the PCR reaction for 4 samples (I2, I6, I10 and I16). The protocol which consists in diluting the extract was applied and permitted to "lift" this inhibition.

• Reference method results

		Contamination level	
Laboratory	LO	L1	L2
Α	0/8	8/8	8/8
В	0/8	8/8	8/8
С	0/8	8/8	8/8
D	0/8	8/8	8/8
E	0/8	7/8	8/8
F	0/8	8/8	8/8
G	0/8	8/8	8/8
Н	0/8	8/8	8/8
I	0/8	8/8	8/8
J	0/8	8/8	8/8
K	0/8	8/8	8/8
L	0/8	7/8	8/8

Table 18: reference method positive results for all laboratories

Results analysis

The results are consistent with those expected for the level L0 and the level L2. All discordant results are found at the L1 level, the contamination of this level is comprise between 0 and 8 CFU/g. No typical colonies are observed after streaking enriched PCRone broth on CT-SMAC agar. This result is due to the difference of sampling between both methods, no cell of $E.\ coli\ O157$ may have been taken in the sampling for the methods regarding the low level of contamination.

3.2.5. Specificity (SP) and sensitivity (SE) calculations

The specificity and sensitivity calculations of both methods are presented in table 19, with the low critical value (LCL). Formulas used are:

For level L0, SP = $[1-(FP/N-)] \times 100\%$, N-: total number of L0 tests

FP: number of false positive

For levels L1 and L2, SE = $(TP/N+) \times 100\%$, N+: total numbers of L1 or L2 tests

TP: number of true positive

Specificity / sensitivity	Alternative method	LCL	Reference method	LCL
SP (level L0)	100%	98%	100%	98%
SE (level L1)	93%	88%	98%	96%
SE (level L2)	100%	98%	100%	98%
SE (level L1+L2)	96%	93%	99%	98%

Table 19: specificity (SP), sensitivity (SE) and LCL of alternative and reference method

3.2.6. Relative accuracy calculations

Pairs of results of the different levels of contamination are presented in table 20.

Level	Alternative	F	Reference metho	d
Levei	method	RM+	RM-	Total
	AM+	PA=0	PD=0	0
L0	AM-	ND=0	NA=96	96
	Total	0	96	96
	AM+	PA=87	PD=2	89
L1	AM-	ND=7	NA=0	7
	Total	94	2	96
	AM+	PA=96	PD=0	96
L2	AM-	ND=0	NA=0	0
	Total	96	0	96
	AM+	PA=183	PD=2	185
L0+L1+L2	AM-	ND=7	NA=96	103
	Total	190	98	288

Table 20: tests results for both methods (PA: positive agreement, NA: negative agreement, ND: negative deviation, PD: positive deviation)

Relative accuracy values of the different contamination levels are presented in table 19 with their LCL. Formula used is the following:

 $AC = (PA+NA)/N \times 100\%$, PA: number of positive agreements

NA: number of negative agreements

Level	Relative accuracy (AC)	LCL (Low Critical Value)
LO	100%	98%
L1	91%	84%
L2	100%	98%
L1+L2	95%	93%
Total	97%	93%

Table 21: relative accuracy values (AC) and LCL of alternative method

3.2.7. Discordant results analysis

Discordant results are analysed according to the annex F of ISO 16140 standard. The total number of discordant results is given by the following formula: Y = PD + ND. In the present case, Y = 7 + 2 = 9, the binomial law test was used to compare the two methods:

	Alternative method
Y = PD + ND	Y = 7 + 2 = 9
m	2
M (for 9≤Y≤11)	1
Conclusion	m > M the two methods are not different
Conclusion	for $a = 0.05$

The HQS E. coli O157:H7 test and the reference method can be considered as equivalent.

3.3. Interpretation

3.3.1. Accordance

The accordance is the percentage chance of finding the same result (i.e. both negative or both positive) from two identical test portions analysed in the same laboratory, under repeatability conditions (i.e. one operator using the same apparatus and same reagents within the shortest feasible time interval).

To derive the accordance from the results of an interlaboratory study, the probability that two samples give the same result is calculated for each participating laboratory in turn, and this probability is then averaged over all laboratories. Values of accordance are shown in table 22.

Level	Alternative method	Reference method
LO	100%	100%
L1	89%	96%
L2	100%	100%

Table 22: accordance by level and method

3.3.2. Concordance

The concordance is the percentage chance of finding the same result for two identical samples analysed in two different laboratories.

To calculate the concordance from the results of an interlaboratory study, take in turn each replicate in each participating laboratory, pair it with identical results of all the other laboratories. The concordance is the percentage of all pairings giving the same results on all the possible pairings of data. Values of concordance are shown in table 23.

Level	Alternative method	Reference method
LO	100%	100%
L1	86%	96%
L2	100%	100%

Table 23: concordance by level and method

3.3.3. Concordance odds ratio

If the concordance is smaller than the accordance, it indicates that two identical samples are more likely to give the same result if they are analysed by the same laboratory than if they are analysed by different ones, suggesting that there can be variability in performance between laboratories. Unfortunately, the magnitude of the concordance and accordance is strongly dependent on the level of accuracy, making it difficult to assess easily the degree of between-laboratory variation.

It is therefore helpful to calculate the concordance odds ratio (COR) defined as follows: $COR = accordance \times (100-concordance)/concordance \times (100 - accordance)$.

Values of COR for both methods are shown in table 24.

A value for the odds ratio of 1.00 would be expected if accordance and concordance were equal, and the larger the odds ratio is, the more inter-laboratory variation is predominant. Nevertheless, values above 1.00 can occur by chance variation, and so a statistical significance test should be used to confirm whether the evidence for extra variation between laboratories is convincing. The "exact test" is the best recommended test for this). The philosophy behind such tests is that the probabilities of occurrence are calculated for all sets of replicate results that could have produced the overall numbers of positives and negatives.

Alternative method Reference method Level **Accordance Concordance Accordance Concordance** L0 100 1,0 100 100 1,0 100 L1 89 86 1,3 96 96 1,0 L2 100 100 100 100 1,0

Table 24: COR values for each method by contamination level

3.3.4. AC, SP, SE comparison

Table 23 summarizes the values obtained for AC, SP and SE parameters for the preliminary study and the interlaboratory study.

Parameter	Preliminary study -24 hours of incubation	Interlaboratory study
AC	98,3%	97%
SP	98,4%	100%
SE	98,3%	96%

Table 25: AC, SP and SE comparison between preliminary and interlaboratory study

The values obtained during the collaborative study are better than those obtained during the preliminary study, probably because of the greater variety of samples and strains tested during the preliminary study.

The sensitivity of both methods is recalculated in table 26 by including all confirmed positive results.

Alternative method (PA+PD)/(PA+PD+ND)	Reference method (PA+ND)/(PA+PD+ND)	
96%	99%	

Table 26: sensitivity recalculated by both methods

4. Practicability

The practicability was evaluated according to the 13 criteria defined by AFNOR Technical Committee.

1- Mode of packaging of test components

Barrettes of 8 micro tubes with extraction solution

Barrettes of 8 micro tubes with PCR solution

Barrettes of 8 micro tubes with control solutions

2- Volume of reagents

None informed

<u>3- Storage conditions of components and shelf-life of unopened products</u> (expiration of not opened products)

The HQS detection kits must be stored at - 20 °C.

4- Modalities after first use

None informed

5- Equipment and specific local requirements

Equipment

- Real-time PCR thermocycler
- Centrifuge
- Capping tool
- Barrettes supports
- Two multi-channel pipettes
- Two single channel pipettes
- PCR encloser
- *Stomacher* (homogenizer)
- Incubators
- Dilutor
- Bunsen burner
- Serological pipette pump
- Stomacher bag holder
- Refrigerator 4°C (2 to 8°C)
- Colour printer
- Pipettes supports
- Tubes racks

6- Reagents ready to use or for reconstitution

Ready to use solutions.

7- Training period for operator with no experience with the method

4 day is required for technicians with microbiology knowledge.

8- Handling time and flexibility of the method in relation to the number of samples

	Time (minutes)			
Steps- Manipulation time	Alternative method		Reference method	
Steps- Manipulation time	1	20	1	20
	analysis	analyses	analysis	analyses
Suspension	3	23	3	23
Sampling	0.5	15	/	/
IMS	/	/	2	120
Extraction	4.5	46	/	/
Amplification	22	105	/	/
PCR reading	2	5,5	/	/
IMS	20	120	20	120
Reading	0.2	2	0.2	2
Confirmation test	8	70	8	70
Total	59,7	371,5	51,2	335

9- Time required for results

Steps –Time for negative results	Alternative method	Reference method
Suspension	D0	D0
Sampling	D1	D0
IMS	/	D0
Extraction	D1	/
Amplification	D1	/
PCR reading	D1	/
IMS	/	D1
Reading	/	D2/D3

Steps -Time for positive results	Alternative method	Reference method
Suspension	D0	D0
Sampling	D1	D0
IMS	/	D0
Extraction	D1	/
Amplification	D1	/
PCR reading	D1	/
IMS	D1	D1
Reading	D2	D2/D3
Confirmation	D4	D4/D5

10- Operator qualification

Identical as necessary for the reference method

11- <u>Steps common with the reference method</u> None.

12- <u>Traceability of analysis results</u> Traceability realized by paper sheet

13- <u>Maintenance by laboratory</u> None.

5. Conclusion

Concerning the preliminary study, the performances of the HQS $\it E.~coli$ O157: H7 test for the detection of $\it E.~coli$ O157: H7 are comparable to those of the standard NF EN ISO 16654 (2001).

This study concerned 121 samples of five categories of products (meat, dairy products).

Values obtained for the 3 criteria are the following:

	Alternative method 12 hours	Alternative method 24 hours
Relative accuracy	96,7 %	98,3 %
Relative sensitivity	95,0 %	98,3 %
Relative specificity	98,4 %	98,4 %

Several discordant results were observed. Mostly of them may be explained because the first culture step of each method differs. Consequently, 2 replicates were prepared for each sample. Because of the low level of artificial contamination, is it possible that no cell of *E. coli* O157:H7 was present in the test portion replicate analysed with either method.

The relative level of detection of the alternative method and the reference method was evaluated for two product categories. The detection limit obtained with the alternative method is comprised between 0.7 and 2.0 CFU in 25 g. at 12 hours and is comprised between 0.6 and 1.7 CFU in 25 g. at 24 hours The detection limit obtained with the reference method is comprised between 0.5 and 1.5 CFU in 25 g. The specificity of the method is satisfactory.

Concerning the interlaboratory study, the results obtained for the 12 selected laboratories showed that the values of relative accuracy, relative sensitivity and relative specificity are comparable to those obtained during the preliminary study. The variability of the alternative method, demonstrated by the calculations of accordance, concordance and concordance odds ratio, is similar to that of the reference method.

The study of the practicability of the alternative method shows a simple and easy-to-use method and a time savings compared to the reference method.

Massy, the 17th of December 2010 François Le Nestour

Research engineer

Annex 1: selectivity

Inclusivity list

	Code	Microorganism	Origin
1	ESC.1.70	Escherichia coli 0157:H7	Fécès
2	ESC.1.71	Escherichia coli 0157:H7	Clinique
3	ESC.1.72	Escherichia coli 0157:H7	Clinique
4	ESC.1.73	Escherichia coli 0157:H7	Clinique
5	ESC.1.74	Escherichia coli 0157:H7	Environnement
6	ESC.1.75	Escherichia coli 0157:H7	Clinique
7	ESC.1.76	Escherichia coli 0157:H7	Clinique
8	ESC.1.77	Escherichia coli 0157:H7	Clinique
9	ESC.1.78	Escherichia coli 0157:H7	Clinique
10	ESC.1.81	Escherichia coli 0157:H7	ATCC 700728
11	ESC.1.82	Escherichia coli 0157:H7	NCTC 12900
12	ESC.1.89	Escherichia coli 0157:H7	CIP 105214
13	ESC.1.90	Escherichia coli 0157:H7	CIP 105243
14	ESC.1.91	Escherichia coli 0157:H7	CIP 105190
15	ESC.1.92	Escherichia coli 0157:H7	CIP 106327
16	ESC.1.93	Escherichia coli 0157:H7	CIP 105917
17	ESC.1.94	Escherichia coli 0157:H7	USDA C7927
18	ESC.1.95	Escherichia coli 0157:H7	USDA 45753-32
19	ESC.1.96	Escherichia coli 0157:H7	R&F 224 (porc)
20	ESC.1.97	Escherichia coli 0157:H7	USDA 505b (bœuf)
21	ESC.1.98	Escherichia coli 0157:H7	R&F 219 (cidre)
22	ESC.1.99	Escherichia coli O157:H7	ATCC 51657 (fécès humains)
23	ESC.1.100	Escherichia coli 0157:H7	ATCC 35150 (fécès humains)
24	ESC.1.101	Escherichia coli 0157:H7	Abattoir bovin
25	ESC.1.102	Escherichia coli O157:H7	Fécès humains
26	ESC.1.103	Escherichia coli O157:H7	Fécès humains
27	ESC.1.104	Escherichia coli 0157:H7	Steack
28	ESC.1.105	Escherichia coli O157:H7	Environnement
29	ESC.1.106	Escherichia coli O157:H7	Fécès bovins
30	ESC.1.107	Escherichia coli O157:H7	Environnement
31	ESC.1.108	Escherichia coli O157:H7	Viande de bœuf
32	ESC.1.109	Escherichia coli 0157:H7	Viande de bœuf
33	ESC.1.110	Escherichia coli O157:H7	Viande de bœuf
34	ESC.1.51	Escherichia coli 0157:H7	CIP 105917
35	ESC.1.52	Escherichia coli 0157:H7	Souche clinique
36	ESC.1.53	Escherichia coli 0157:H7	Souche clinique
37	ESC.1.54	Escherichia coli 0157:H7	Souche clinique
38	ESC.1.55	Escherichia coli 0157:H7	Souche clinique
39	ESC.1.56	Escherichia coli 0157:H7	Souche clinique
40	ESC.1.57	Escherichia coli 0157:H7	Souche clinique
41	ESC.1.58	Escherichia coli 0157:H7	Souche clinique
42	ESC.1.59	Escherichia coli 0157:H7	Souche clinique
43	ESC.1.60	Escherichia coli 0157:H7	Souche clinique
44	ESC.1.61	Escherichia coli 0157:H7	Souche clinique
45	ESC.1.83	Escherichia coli 0157:H7	Steack haché
46	ESC.1.88	Escherichia coli 0157:H7	CIP 105181
47	ESC.1.129	Escherichia coli 0157:H7	Viande hachée
48	ESC.1.130	Escherichia coli 0157:H7	Viande hachée
49	ESC.1.131	Escherichia coli 0157:H7	Viande hachée
50	ESC.1.132	Escherichia coli 0157:H7	Souche clinique

Exclusivity list

	Strain code	Microorganism	Origin
1	ESC.1.62	Escherichia coli O26:K60(B6)	CIP 52.171
2	ESC.1.63	Escherichia coli O26:K60(B6):H11	CIP 52.172
3	ESC.1.64	Escherichia coli O55:H7	CIP 105228
4	ESC.1.65	Escherichia coli 0111:H21	CIP 107192
5	ESC.1.66	Escherichia coli 0121	CIP 105992
6	ESC.1.67	Escherichia coli 0128:H7	CIP 107199
7	ESC.1.68	Escherichia coli O157:H43	CIP 107193
8	ESC.1.69	Escherichia coli O157:K88a,c:H19	CIP 105185
9	ESC.1.84	Escherichia coli 0111	CIP 105935
10	ESC.1.3	Escherichia coli	Industrie laitière
11	ESC.1.5	Escherichia coli	Camembert
12	ESC.1.10	Escherichia coli	Poulet mariné
13	ESC.1.11	Escherichia coli	Blanc de poulet
14	ESC.1.12	Escherichia coli	Collier d'agneau
15	ESC.1.14	Escherichia coli	Escalope de dinde crue
16	ESC.1.15	Escherichia coli	Bœuf muscle 80/20
17	ESC.1.16	Escherichia coli	Viande bœuf hachée
18	ESC.1.30	Escherichia coli	Camembert
19	ESC.1.35	Escherichia coli	Laguiole au lait cru
			Cantal jeune au lait
20	ESC.1.36	Escherichia coli	cru
21	CIT.1.2	Citrobacter freundii	ATCC 8090
22	CIT.2.2	Citrobacter diversus	CIP 82.87 T
23	HAF.1.1	Hafnia alvei	Taboulé
24	KLE.1.1	Klebsiella oxytoca	Salade soja
25	PAN.1.2	Pantoa agglomerans	CIP 57.51 T
26	PRO.1.1	Proteus mirabilis	CIP 103181
27	SAL.1.133	Salmonella Typhimurium	Ground beef
28	SER.1.1	Serratia ficaria	CIP 79.23
29	SHI.2.1	Shigella sonnei	ATCC 9290
30	PSE.2.1	Pseudomonas fluorescens	CIP 69.13 T
31	SAL.1.174	Salmonella Soerenga	Soja
32	SAL.1.175	Salmonella Urbana	Bœuf
33	SAL.1.176	Salmonella Hilversum	/