

NF VALIDATION

VALIDATION AFNOR CERTIFICATION DE LA METHODE

XplOrer64™ / CheckN'Safe™ Enterococci Kit

pour le dénombrement des entérocoques

Protocole pour les eaux de baignade, les eaux de rejet et les eaux résiduaires brutes et traitées

RAPPORT DE SYNTHESE- JUILLET 2015 - V1

Laboratoire expert:

ISHA 25 avenue de la République 91300 MASSY FRANCE

Fabricant:

BIO-RAD 3, boulevard Raymond Poincaré 92430 MARNES LA COQUETTE FRANCE

Ce rapport d'analyse ne concerne que les objets soumis aux analyses. Sa reproduction n'est autorisée que sous forme de fac-similé photographique intégral. Il comporte 60 pages. Seuls certains essais reportés dans ce document sont couverts par l'accréditation de la Section Laboratoire du COFRAC. Ils sont identifiés par le symbole (*).

Essais réalisés à l'ISHA: 25 avenue de la République, 91300 Massy, France.

Table des matières

1.	Intr	oducti	on	. 4
	1.1.	Date	(s) et historique de validation	4
	1.2.	Princ	ipe et protocole de la méthode alternative	4
	1.3.	Doma	aine d'application	4
	1.4.	Méth	node de référence à laquelle la méthode alternative a été comparée	. 4
2.	Etuc	de con	nparative des méthodes	. 5
	2.1.	Exact	titude, spécificité et sensibilité relatives	. 5
	2.1.	1.	Nombre et nature des échantillons	. 5
	2.1.	2.	Résultats bruts	. 5
	2.1.	3.	Exploitation statistique	7
	2.1.	4.	Conclusion	. 8
	2.2.	Linéa	rité	. 8
	2.2.	1.	Niveaux de contamination	8
	2.2.	2.	Résultats bruts	8
	2.2.	3.	Exploitation statistique	10
	2.2.	4.	Conclusion	10
	2.3.	Limit	es de détection (LOD) et de quantification (LOQ)	11
	2.3.	1.	Protocole d'essai	11
	2.3.	2.	Résultats	11
	2.3.	3.	Conclusion	12
	2.4.	Spéci	ificité / sélectivité	12
	2.4.	1.	Protocoles d'essai	12
	2.4.	2.	Résultats	12
	2.4.	3.	Conclusion	13
	2.5.	Pratio	cabilité	13
	2.6.	Conc	lusion générale	14
3.	Etuc	de inte	erlaboratoires	16
	3.1.	Mise	en œuvre de l'étude collaborative	16
	3.1.	1.	Laboratoires collaborateurs	16
	3.1.	2.	Vérification de l'absence d'entérocoque dans la matrice	16
	3.1.	3.	Stabilité des souches dans la matrice	16
	3.1.	4.	Préparation et inoculation des échantillons	16
	3.1.	5.	Etiquetage des échantillons	16
	3.1.	6.	Expédition des échantillons	17
	3.1.	7.	Réception et analyse des échantillons	17

3.2. Rés	sultats	17
3.2.1.	Température et état des échantillons à réception	17
3.2.2.	Dénombrement de la flore totale	17
3.2.3.	Résultats des laboratoires expert et collaborateurs	17
3.3. Inte	erprétation statistique	17
3.3.1.	Calcul du biais	17
3.3.2.	Profils d'exactitude	18
3.4. Cor	nclusion	18
4 Conclusi	ion	20

Annexes

Annexe 1 : protocoles de la méthode alternative et de la méthode de référence

Annexe 2 : résultats d'exactitude relative de la validation initiale

Annexe 3 : souches stressées essais complémentaires

Annexe 4 : résultats de l'exactitude relative de l'étude d'extension et des essais complémentaires

Annexe 5 : résultats de la linéarité Annexe 6 : résultats de la LOD/LOQ Annexe 7 : résultats de la sélectivité

Annexe 8 : résultats de l'étude collaborative

1. Introduction

1.1. Date(s) et historique de validation

La méthode XplOrer64 pour le dénombrement des Entérocoques dans les eaux de baignade a été validée AFNOR Certification en 2009 sous le numéro d'attestation BRD 07-19 – 11/09 selon le protocole de validation d'une méthode alternative commerciale par rapport à une méthode de référence (révision 1).

Une étude d'extension a été réalisée en 2011 pour la détection des entérocoques dans les eaux résiduaires traitées (catégorie 1b en 2010, nouvelle sous-catégorie en 2013 « eaux de rejet, résiduaires brutes et traitées » de la catégorie des eaux industrielles). Les trois différents protocoles de la méthode alternative pour cette catégorie ont été appliqués.

En 2011, l'ensemble des résultats de l'étude comparative de la validation initiale et de l'étude d'extension ont été exploités avec le logiciel XplOrer64 V3.0 et la courbe de calibration QC Entero.

L'ensemble de ces essais a été réalisé par le laboratoire EUROFINS IPL Nord dans le cadre de la marque NF VALIDATION, conformément aux exigences en vigueur.

En 2014, lors de la première reconduction de la méthode, des essais complémentaires d'exactitude portant sur des échantillons de la catégorie « eaux de baignade » ont été réalisés en duplicat, ceci afin d'être conforme à la révision 2 du « Protocole de validation d'une méthode alternative commerciale par rapport à une méthode de référence » de mai 2013. Ces essais ont été réalisés par le laboratoire ISHA.

1.2. Principe et protocole de la méthode alternative

La méthode XplOrer64 est une méthode automatisée par mesure de l'impédancemétrie, en milieu liquide, sans confirmation. Chaque cellule de mesure contient le milieu de culture sélectif, qui permet la croissance spécifique des souches d'entérocoques, et deux électrodes mesurant la variation du signal d'impédance pendant la croissance.

La détection des entérocoques et l'analyse des données sont optimisées pour une utilisation avec le système automatisé XplOrer64 et le logiciel XplOrer64 V3.0.

La notice d'utilisation actuellement en vigueur de la méthode alternative est présentée en annexe 1 et le protocole utilisé durant l'étude de validation dans l'annexe 2.

1.3. Domaine d'application

Le domaine d'application de la méthode, conformément à la révision 2 du « Protocole de validation d'une méthode alternative commerciale par rapport à une méthode de référence » de mai 2013, regroupe :

- la catégorie des eaux de baignade comprenant les sous-catégories « eaux douces » et « eaux de mer »
- la sous-catégorie « eaux de rejet, résiduaires brutes et traitées » de la catégorie des eaux industrielles.

1.4. Méthode de référence à laquelle la méthode alternative a été comparée

La norme NF EN ISO 7899-1 : 1999 « Qualité de l'eau : Recherche et dénombrement des entérocoques intestinaux dans les eaux de surface et résiduaires – Partie 1 : Méthode miniaturisée (nombre le plus probable) pour ensemencement en milieu liquide ».

Le protocole de la méthode de référence est présenté en annexe 2.

2. Etude comparative des méthodes

2.1. Exactitude, spécificité et sensibilité relatives

L'exactitude relative est définie comme l'étroitesse de l'accord entre le résultat d'essai et la valeur de référence acceptée.

2.1.1. Nombre et nature des échantillons

Etude de validation initiale de 2009

La première exploitation statistique avait porté sur 63 résultats interprétables provenant de 170 échantillons (dont 160 naturellement contaminés et 10 artificiellement contaminés), appartenant aux deux catégories d'eau suivantes : eau douce (40 échantillons exploitables) et eau de mer (33 échantillons exploitables).

Les 10 échantillons artificiellement contaminés étaient des échantillons d'eau de mer obtenus en contaminant de l'eau de mer avec une eau de station d'épuration (concentration entre 10³ et 10⁴ cellules / 100 mL) afin d'obtenir de fortes concentrations.

Les essais avaient été réalisés en simple par les deux méthodes. L'exploitation des données en 2011 avec la version 3 du logiciel XplOrer64 avait permis de retenir 39 résultats pour les eaux douces et 15 résultats pour les eaux de mer.

• Etude d'extension de 2011

L'exploitation statistique a porté sur 68 résultats interprétables provenant de 109 échantillons d'eaux résiduaires traitées (effluents de station d'épuration), tous naturellement contaminés, et analysés en double par les deux méthodes. Trois protocoles ont été testés, le protocole général (filtration de 100 mL), le protocole spécifique 1 (filtration de 10 mL) et le protocole spécifique 2 (ensemencement de 1 mL).

<u>Etude de reconduction et essais complémentaires de 2014</u>

Une catégorie d'eaux, les eaux de baignade, a été testée en duplicat avec la méthode de référence et la méthode alternative.

Les différents types d'échantillons analysés sont présentés dans le tableau 1.

Dénombrement	Type d'eau	Echantillons analysés	Echantillons exploités
	Eaux douce	14	10
Entérocoques	Eaux de mer	24	10
	Total	38	20

Tableau 1 : nature et nombre d'échantillons analysés

Au total, 38 échantillons ont été analysés et 20 résultats ont été exploités. Les échantillons non retenus dans l'analyse statistique correspondent à des échantillons pour lesquels des dénombrements inférieurs ou supérieurs à la limite de détection ont été trouvés pour au moins un des réplicats de l'une ou l'autre des méthodes.

Les taux de contaminations employés couvrent l'ensemble de la gamme de mesure de la méthode alternative. Les stress appliqués et les souches utilisées sont présentés en annexe 4.

2.1.2. Résultats bruts

Les résultats bruts et les calculs statistiques sont résumés dans les tableaux 2 et 3 et en annexe 5. La figure 1 représente les graphiques bidimensionnels pour la catégorie testée. L'axe y est réservé à la méthode alternative et l'axe x à la méthode de référence. La représentation d'une droite d'équation « y=x » figure en pointillés sur les figures.

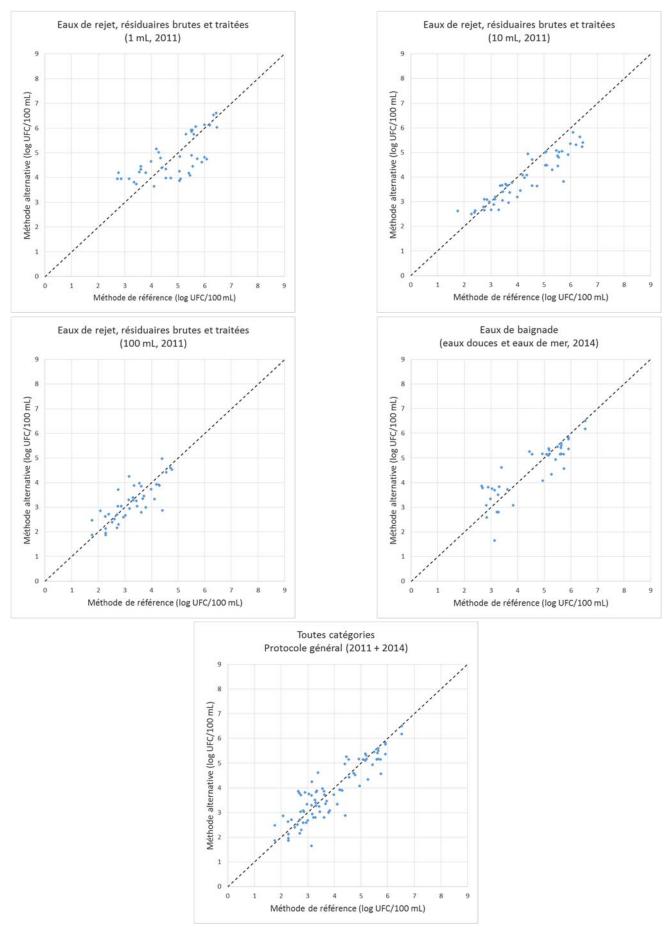


Figure 1 : graphiques bidimensionnels représentant les résultats bruts de l'étude de justesse

2.1.3. Exploitation statistique

La relation d'exactitude relative entre la méthode de référence et la méthode alternative est évaluée avec le modèle linéaire : « y = a + bx ». Cette formule correspond à l'équation de la droite de régression linéaire tracée à partir des résultats bruts obtenus par l'expérimentation, y représentant la méthode alternative et x la méthode de référence.

Il y a une exactitude idéale (ou il n'y a pas de biais systématique) entre les deux méthodes si cette équation est égale à l'équation théorique « y = x », qui s'applique dans le modèle idéal où les deux méthodes se comportent de la même façon.

L'intercept « a » est théoriquement nul dans ce modèle idéal (hypothèse [a=0]). L'intercept estimé obtenu avec les deux méthodes est vérifié à l'aide de p{a=0}. Si la méthode alternative présente un biais systématique par rapport à la méthode de référence, la probabilité p{a=0} est inférieure à α = 0,05.

La pente « b » est théoriquement égale à 1 dans le modèle idéal (hypothèse [b=1]). La pente estimée obtenue avec les deux méthodes doit se vérifier par p{b=1}. Statistiquement, si la méthode alternative ne donne pas les mêmes valeurs que la méthode de référence, la probabilité p{b=1} est inférieure à α = 0,05.

Le choix de la méthode de régression linéaire se fait par rapport à la valeur de la robustesse du rapport R des écart-types de répétabilité globale :

- si Rob.R>2, une régression linéaire par les moindres carrés (OLS 1) est utilisée avec l'axe des x pour la méthode de référence.
- si Rob.R<0,5, une régression linéaire par les moindres carrés (OLS 2) est utilisée avec l'axe des x pour la méthode alternative,
- si 0,5<Rob.R<2, une régression orthogonale (GMFR) est utilisée avec l'axe des x pour la méthode de référence.

		Dágrasian	T criti-					Probabilit	és (%)
Catégorie	Rob.R	Régression utilisée		а	t(a)	b	t(b)	Ordonnée	Pente
		utilisee	que					à 0	à 1
Eaux de rejet,									
résiduaires et	0,660	GMFR	2,080	0,980	1,475	0,790	1,559	15,7	13,5
traitées 1 mL									
Eaux de rejet,									
résiduaires et	0,900	GMFR	2,056	0,700	3,046	0,759	4,654	0,5	0,01
traitées 10 mL									
Eaux de rejet,									
résiduaires et	2,342	OLS1	2,080	0,606	1,428	0,792	1,637	17,0	11,8
traitées 100 mL									
Eaux de baignade	4,391	OLS1	2,086	0,458	1,303	0,895	0,306	20,1	76,2
Toutes catégories	3,553	OLS1	2,019	0,146	0,141	0,951	0,191	88,8	84,9
protocole général	3,333	OLSI	2,019	0,140	0,141	0,331	0,191	00,0	04,3

Tableau 2 : données statistiques pour le dénombrement des entérocoques dans les catégories

	Biai	s (D)	Répétabilité			
Catégorie	Moven	Médian	r		rob. r	
	Moyen	ivieulali	MR	MA	MR	MA
Eaux de rejet, résiduaires et traitées 1 mL	-0,032	0,109	0,691	0,754	0,373	0,246
Eaux de rejet, résiduaires et traitées 10 mL	-0,326	-0,319	0,669	0,579	0,413	0,372
Eaux de rejet, résiduaires et traitées 100 mL	-0,069	-0,140	0,464	1,011	0,453	1,061
Eaux de baignade	-0,016	-0,155	0,238	1,269	0,222	0,973
Toutes catégories protocole général	-0,043	-0,140	0,371	1,144	0,276	0,980

Tableau 3 : biais et répétabilité des deux méthodes

2.1.4. Conclusion

L'équation de la droite de régression des différents couples sont les suivantes :

Matrice testée	Droite de régression (log entérocoques / 100 mL)
Eaux de rejet, résiduaires et traitées 1 mL	log(Alt) = 0.790 log(Ref) + 0.980
Eaux de rejet, résiduaires et traitées 10 mL	log(Alt) = 0,759 log(Ref) + 0,700
Eaux de rejet, résiduaires et traitées 100 mL	log(Alt) = 0.792 log(Ref) + 0.606
Eaux de baignade	log(Alt) = 0,895 log(Ref) + 0,458
Toutes catégories protocole général	log(Alt) = 0.951 log(Ref) + 0.146

L'hypothèse [a=0 et b=1] est acceptée pour toutes les catégories testées, à l'exception des eaux de rejet et résiduaires pour le protocole 10 mL. Pour ce couple, le coefficient de corrélation et l'équation de la droite de régression sont corrects : respectivement 0,944 et log(Alt) = 0,759 log(Ref) + 0,700.

Le biais entre les deux méthodes est compris entre -0,319 et 0,109 en fonction du protocole et de la catégorie testés.

L'exactitude relative de la méthode alternative est correcte.

2.2. Linéarité

La linéarité est définie comme l'aptitude de la méthode à fournir des résultats proportionnels à la quantité de microorganismes présents dans l'échantillon, c'est-à-dire qu'à une augmentation de l'analyte correspond une augmentation linéaire ou proportionnelle des résultats.

2.2.1. Niveaux de contamination

Les couples matrice / souche sont présentés dans le tableau 4. Pour ce couple, trois niveaux de contaminations ont été testés en double par la méthode de référence et la méthode alternative.

Souche	Matrice	Taux de contamination cible (UFC/100 mL)
E. faecalis (souche CCM 2541,	Eau douce superficielle	50 / 500 / 5000
collection Eurofins IPL Nord)	Eau de mer	30 / 300 / 3000
E. faecalis (eau station d'épuration, collection Eurofins IPL Nord)	Eau résiduaire traitée, protocole général	2.10 ²
E. faecalis (eau station d'épuration, collection Eurofins IPL Nord)	Eau résiduaire traitée, protocole 10 mL	2.10^{4}
E. faecalis (eau station d'épuration, collection Eurofins IPL Nord)	Eau résiduaire traitée, protocole 1 mL	2.10 ⁶

Tableau 4: couples souche / matrice analysés

2.2.2. <u>Résultats bruts</u>

Les résultats bruts et les calculs statistiques sont résumés en annexe 6. Les graphiques de la figure 2 présentent les valeurs de chaque échantillon obtenues par la méthode alternative et la méthode de référence. L'axe y est réservé à la méthode alternative et l'axe x à la méthode de référence.

La représentation d'une droite d'équation « y=x » figure en pointillés sur les figures.

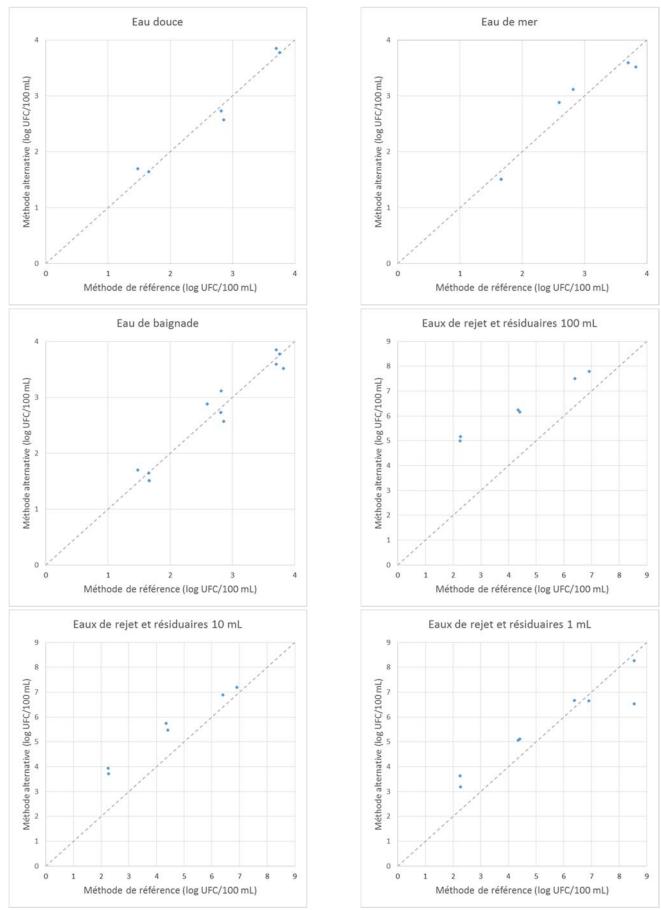


Figure 2 : graphiques bidimensionnels représentant les résultats bruts de l'étude de linéarité

2.2.3. Exploitation statistique

Les interprétations statistiques sont réalisées conformément aux exigences de la norme NF ISO 16140 (cf. tableau 5).

Pour le niveau de concentration le plus faible pour la sous-catégorie « Eau de mer », un des réplicats de la méthode alternative a donné un résultat <1 UFC/100 mL lors de l'étude de validation initiale. L'interprétation statistique n'est par conséquent pas présentée pour cette sous-catégorie en raison du faible nombre de niveaux disponibles (seulement deux). Les deux niveaux exploitables restants sont cependant repris pour l'interprétation statistique de la catégorie « Eau de baignade » qui regroupe les résultats obtenus pour l'eau douce et l'eau de mer.

Le choix de la méthode de régression linéaire se fait par rapport à la valeur de la robustesse du rapport R des écart-types de répétabilité globale :

- si Rob.R>2, une régression linéaire par les moindres carrés (OLS 1) est utilisée avec l'axe des x pour la méthode de référence,
- si Rob.R <0,5, une régression linéaire par les moindres carrés (OLS 2) est utilisée avec l'axe des x pour la méthode alternative,
- si 0,5< Rob.R <2, une régression orthogonale (GMFR) est utilisée avec l'axe des x pour la méthode de référence.

Catégorie	Rob. R	Régression utilisée	F critique	Rob. F	P (Rob.F)	Coefficient de corrélation (r)	Droite de régression
Eau douce	1,413	GMFR	10,1	56,327	0,005	0,989	log Alt = 0,986 log Réf + 0,039
Eau de baignade	0,667	GMFR	5,41	13,092	0,008	0,973	log Alt = 0,935 log Réf + 0,207
Eaux de rejet, résiduaires et traitées 100 mL	2,524	OLS1	10,1	0,484	0,537	0,999	log Alt = 0,586 log Réf + 3,712
Eaux de rejet, résiduaires et traitées 10 mL	4,132	OLS1	10,1	0,788	0,440	0,996	log Alt = 0,734 log Réf + 2,245
Eaux de rejet, résiduaires et traitées 1 mL	6,628	OLS1	6,94	11,456	0,022	0,991	log Alt = 0,674 log Réf + 1,960

Tableau 5 : données statistiques du couple souche / matrice (données brutes et logarithmiques)

La relation entre les 2 méthodes n'est pas linéaire :

- si Rob.F > F critique,ou
- si P(Rob.F)< α (=0,05)

2.2.4. Conclusion

La relation entre les deux méthodes est linéaire pour les matrices eaux de rejet et eaux résiduaires, protocole 100 mL et 10 mL.

Pour les matrices eau douce et eau de baignade, les coefficients de corrélation et les équations de la droite de régression sont satisfaisants.

Pour le protocole de 1 mL réalisé avec des eaux résiduaires traitées, les coefficients de corrélation et l'équation de la droite de régression sont corrects. Le résultat du test statistique illustre la dispersion des points obtenus pour le niveau le plus élevé avec ces matrices.

La linéarité de la méthode alternative est correcte.

2.3. Limites de détection (LOD) et de quantification (LOQ)

Le niveau critique est défini comme la plus petite quantité qui peut être détectée (non nulle), mais non quantifiée comme une valeur exacte.

La limite de détection est définie comme le niveau supérieur au niveau critique.

La limite de quantification est définie comme la plus petite quantité d'analyte qui peut être mesurée et quantifiée avec une exactitude et une fidélité définies dans les conditions expérimentales.

2.3.1. Protocole d'essai

Les limites de détection et de quantification ont été déterminées en analysant une culture pure d'une souche d'entérocoques par la méthode alternative.

Cinq niveaux de contamination, avec six répétitions pour chaque niveau, ont été étudiés.

2.3.2. Résultats

Les résultats bruts sont présentés dans l'annexe 7 et la synthèse dans les tableaux suivants.

Protocole général (filtration de 100 mL)

Niveau (UFC/100mL)	Nombre d'échantillons positifs	Ecart-type (So)	Biais (Xo)
0	0/6		Didis (AU)
0,5	3/6	634	22
1,1	6/6	211	153
2,1	6/6	675	696

A partir des valeurs s0 et x0 obtenues pour le premier niveau, la limite critique (LC) et la limite de détection (LOD) ont été déterminées dans 100 mL:

Paramètre	Formules	Valeur obtenue (Entérocoque / 100 mL)
Niveau critique (LC)	1,65 So +Xo	1,0 10 ³
Limite de détection (LOD)	3,30 So+Xo	2,1 10³
Limite de quantification (LOQ)	10,00 So + Xo	3,6 10 ³

• Protocole spécifique 1 (filtration de 10 mL)

Niveau (UFC/100mL)	Nombre d'échantillons positifs	Ecart-type (So)	Biais (Xo)
0	0/6	Ecart-type (50)	Didis (AU)
1,0	3/6	352	90
2,1	4/6	135	10
5,2	5/6	295	355
10,4	6/6	441	220

A partir des valeurs s0 et x0 obtenues pour le premier niveau, la limite critique (LC) et la limite de détection (LOD) ont été déterminées dans 10 mL:

Paramètre	Formules	Valeur obtenue (Entérocoque / 100 mL)
Niveau critique (LC)	1,65 So +Xo	6,7 10 ²
Limite de détection (LOD)	3,30 So+Xo	1,2 10 ³
Limite de quantification (LOQ)	10,00 So + Xo	3,6 10 ³

• Protocole spécifique 2 (ensemencement de 1 mL)

Niveau (UFC/100mL)	Nombre d'échantillons positifs	Foort tuno (So)	Biais (Xo)
0	0/6	Ecart-type (So)	Bidis (AU)
0,5	0/6	0	0
0,7	3/6	289	1
1,4	6/6	632	785
2,9	6/6	349	1200

A partir des valeurs s0 et x0 obtenues pour le premier niveau, la limite critique (LC) et la limite de détection (LOD) ont été déterminées dans 1 mL:

Paramètre	Formules	Valeur obtenue (Entérocoque / 100 mL)
Niveau critique (LC)	1,65 So +Xo	4,8 10 ²
Limite de détection (LOD)	3,30 So+Xo	9,5 10 ²
Limite de quantification (LOQ)	10,00 So + Xo	2,9 10³

2.3.3. Conclusion

La limite de détection et la limite de quantification de la méthode alternative sont satisfaisantes.

2.4. Spécificité / sélectivité

La spécificité est définie comme la capacité de la méthode à mesurer avec exactitude un analyte donné, ou sa quantité dans l'échantillon sans interférences avec les composants non cibles.

La sélectivité est définie comme la capacité de la méthode à mesurer l'analyte recherché exclusivement.

2.4.1. Protocoles d'essai

Protocole pour l'inclusivité

Chaque souche d'entérocoque a été cultivée en bouillon TCS (20 h à 37°C), puis diluée dans du tryptone sel afin d'obtenir entre 10¹-10² cellules dans 100 mL avant réalisation des analyses avec la méthode XplOrer64™ - CheckN'Safe™ Enterococci.

• Protocole pour l'exclusivité

Les différentes souches étudiées ont été cultivées en bouillon TCS (20 h à 37°C), puis diluées dans du tryptone sel afin d'obtenir entre 10³-10⁵ cellules dans 100 mL avant réalisation de l'analyse selon la méthode XplOrer64™ - CheckN'Safe™ *Enterococci*.

En cas de résultat discordant par rapport à celui attendu, un nouvel essai a été réalisé avec, en parallèle, la méthode de référence et la méthode XplOrer64™ - CheckN'Safe™ *Enterococci*.

2.4.2. Résultats

Inclusivité:

Sur 30 souches testées, 28 ont été détectées. En ce qui concerne les 2 souches non détectées :

- une souche *d'Enterococcus avium* (eau de puits) n'a pas été détectée par la méthode alternative et la méthode de référence.
- une souche d'Enterococcus faecalis sur 3 testées n'a pas été détectée par la méthode alternative.

Exclusivité:

Lors de la validation initiale en 2009, 29 des 30 souches interférentes testées n'étaient pas détectées par la méthode alternative comme attendu. Seul l'échantillon dopé avec *Providencia stuartii* avait donné un résultat faussement positif.

Lors de l'extension de 2011 (nouvelle version du logiciel), la réaction croisée avec *Providencia stuartii* n'était plus observée.

2.4.3. Conclusion

En conclusion, les résultats d'inclusivité sont satisfaisants.

2.5. Praticabilité

La praticabilité est étudiée en renseignant les 13 critères définis par le Bureau Technique.

1- Mode de conditionnement des éléments de la méthode

Les cellules de bouillon sélectif CheckN'Safe™ Enterococci sont conditionnés en cartons de 120 ou 60 unités prêtes à l'emploi.

2- Volume des réactifs

Chaque cellule contient 10 ml de bouillon sélectif CheckN'Safe™ Enterococci.

3- Conditions de stockage des éléments

Le kit doit être conservé à +2-8°C ou à température ambiante. La date de péremption et le numéro de lot sont indiqués sur le conditionnement et sur chacun des tests.

4- Modalités d'utilisation après première utilisation

Chaque cellule est à usage unique et doit donc être éliminée à la fin de l'analyse comme une matière potentiellement infectieuse.

5- Equipements ou locaux spécifiques nécessaires

- Configuration normale et matériel courant d'un laboratoire de microbiologie des eaux (rampe de filtration, eau distillée),
- Système automatisé XplOrer64™,
- Portoirs CheckN'Safe™ (Bio-Rad, code 359-3455, 4 unités sont fournies avec le système XplOrer64™),
- Bouchons pour tests CheckN'Safe™, 40 unités stériles × 1 sachet (Bio-Rad, code 359-3457).

6- Réactifs prêts à l'emploi ou à reconstituer

Le bouillon CheckN'Safe™ Enterococci est prêt à l'emploi.

7- Durée de formation de l'opérateur non initié à la méthode

Moins de 1 jour pour un opérateur formé aux techniques classiques de microbiologie (en particulier technique de filtration sur membrane).

8- Temps réel de manipulation et flexibilité de la technique

Protocoles avec filtration (général et spécifique 1)

Pour l'analyse d'un échantillon le temps nécessaire pour la méthode alternative est de 2,7 minutes, alors qu'il faut 5,5 minutes pour réaliser la méthode de référence.

Protocole spécifique 2 (ensemencement direct)

Le protocole spécifique 2 utilisant un ensemencement direct est plus rapide que les 2 autres protocoles de la méthode alternative utilisant une étape de filtration (protocole général et protocole spécifique 1). La filtration est d'autant plus longue que les échantillons ont une filtrabilité réduite, souvent liée au taux et à la taille des matières en suspensions.

La durée d'ensemencement d'un échantillon par méthode XplOrer64™ CheckN'Safe™ Enterococci ne varie pas selon le nombre d'échantillons (en particulier pour le protocole spécifique 2, basé sur un ensemencement direct de 1 mL).

Le gain de temps est obtenu au niveau de la préparation des échantillons et des lectures : l'automate peut accueillir 62 cellules, et donc donner simultanément 62 résultats.

9- Délai d'obtention des résultats

La méthode alternative donne un résultat négatif ou positif selon le type d'eau le jour même ou à J+1, alors que le résultat est obtenu entre J+2 et J+3 par la méthode de référence.

10- Type de qualification de l'opérateur

Personnel formé en microbiologie. Le niveau est identique à celui nécessaire pour la méthode de référence.

11- Etapes communes avec la méthode de référence

Aucune.

12- Traçabilité des résultats d'analyse

Les noms des différents opérateurs peuvent être enregistrés dans l'appareil et sélectionnés selon la personne réalisant l'analyse. Les informations relatives à l'échantillon (référence, origine...) peuvent être enregistrés dans l'appareil, le logiciel. Toutes les données de l'analyse (date, heure, résultats- temps de détection DT...) peuvent être consultées à n'importe quel moment ultérieurement.

13- Maintenance par le laboratoire

Aucune.

2.6. Conclusion générale

L'étude comparative des méthodes a été réalisée selon le référentiel appliqué à l'analyse microbiologique de l'eau « Protocole de validation d'une méthode alternative commerciale par rapport à une méthode de référence » (révision 2) adopté par AFNOR Certification en mai 2013 associé au référentiel NF EN ISO 16140:2003 pour certaines parties de la validation.

Une réinterprétation des résultats acquis antérieurement a été réalisée selon la nouvelle version de logiciel l'XplOrer64™ V3.0, dans le domaine d'application 'eaux de baignade'.

La méthode XplOrer64™ - CheckN'Safe™ Enterococci a été comparée à la méthode NF EN ISO 7899-1.

Les résultats permettent de conclure que :

- la linéarité de la méthode alternative est satisfaisante,
- l'exactitude relative de la méthode alternative par rapport à la méthode de référence est satisfaisante.

Le protocole général validé lors de l'étude initiale sur le domaine d'application « eaux de baignade » est apparu plus adapté à des échantillons de faible teneur en MES.

La corrélation entre la méthode de référence et la méthode alternative selon les 3 protocoles étudiés est apparue satisfaisante.

Les valeurs de répétabilité du protocole général (F100 mL) et du protocole spécifique 2 (Direct 1 mL) sont du même ordre et supérieures à celle de la méthode de référence.

Les biais moyens entre les deux méthodes (méthode alternative – méthode de référence) sont de :

- -0,155 log à -0,140 log pour le protocole général,
- -0,319 log pour le protocole spécifique 1 (F10 mL),
- 0,109 log pour le protocole spécifique 2 (Direct 1 mL).

Enfin, les résultats de spécificité sont satisfaisants.

3. Etude interlaboratoires

3.1. Mise en œuvre de l'étude collaborative

3.1.1. Laboratoires collaborateurs

L'étude collaborative a été réalisée par douze laboratoires collaborateurs.

3.1.2. Vérification de l'absence d'entérocogue dans la matrice

La matrice utilisée était de l'eau de mer prélevée à Gravelines (59). Les analyse réalisées sur cette eau montrent l'absence du germe cible.

3.1.3. Stabilité des souches dans la matrice

Le laboratoire expert a conservé 3 colis de composition identique à ceux envoyés aux participants pour vérification de l'homogénéité des lots d'échantillons préparés par analyses selon NF EN ISO 7899-1 en duplicat des échantillons A, B, C, D, E et F contenus dans chaque colis.

L'exploitation des résultats ne révèle pas d'anomalie, les échantillons préparés étaient de qualité suffisante pour être utilisés dans le cadre de cette étude interlaboratoires.

3.1.4. Préparation et inoculation des échantillons

A partir de cette matrice, 4 batchs, nommés I, II, III et IV, ont été créés successivement :

- Batch I non dopé constitué de 150 litres d'eau de mer placée dans une cuve en polyéthylène équipée d'un bras agitateur mécanique (100 t/min). Après 10 minutes d'agitation, ont été soutirés, sans interruption et sous agitation, 15 flacons notés X et 15 flacons notés Y.
- Batch II constitué du restant du batch I dopé à environ 10² entérocoques / 100 ml. Après 10 minutes d'agitation, ont été soutirés, sans interruption et sous agitation, 15 flacons notés A et 15 flacons notés B, préalablement mélangés entre eux et pris aléatoirement.
- Batch III constitué du restant du batch II dopé à environ 10³ entérocoques / 100 ml. Après 10 minutes d'agitation, ont été soutirés, sans interruption et sous agitation, 15 flacons notés C et 15 flacons notés D, préalablement mélangés entre eux et pris aléatoirement.
- Batch IV constitué du restant du batch I.I dopé à environ 10⁴ entérocoques / 100 ml. Après 10 minutes d'agitation, ont été soutirés, sans interruption et sous agitation, 15 flacons notés E et 15 flacons notés F, préalablement mélangés entre eux et pris aléatoirement.

La souche d'entérocoque utilisée pour les dopages est une souche isolée de l'environnement (plage centrale de Dunkerque (59)). Les dopages ont été réalisés avec une suspension diluée de germes cultivés en bouillon non sélectif pendant 24h.

Après soutirage, les échantillons sont restés à température ambiante pendant 1h puis mis en colis, les flacons étant répartis de manière aléatoire dans les colis. Un thermo-bouton a été placé dans chaque flacon noté X avant mise en colis.

3.1.5. Etiquetage des échantillons

Quinze colis ont ainsi été constitués, contenant chacun des réfrigérants et 8 échantillons :

- échantillons A, B, C, D, E et F pour dénombrement des *E. coli* et entérocoques intestinaux en duplicats par chaque méthode,

- échantillon X pour mesure de la température, échantillon Y pour dénombrement des germes revivifiables à 22°C et 36°C.

3.1.6. Expédition des échantillons

Les échantillons ont été expédiés dans un kit froid le 5 octobre 2009.

3.1.7. Réception et analyse des échantillons

Les colis ont été livrés entre le 6 et le 7 octobre 2009.

3.2. Résultats

3.2.1. <u>Température et état des échantillons à réception</u>

Tous les colis sont arrivés en bon état et tous les participants ont mesuré une température dans le flacon X à réception comprise entre 1°C et 7°C. Tous les thermo-boutons ont bien été renvoyés et les relevés de températures enregistrées confirment que les échantillons sont restés à température réfrigérée pendant le transport.

3.2.2. Dénombrement de la flore totale

La concentration moyenne observée en germes revivifiables à 22°C dans les échantillons sur Marine Agar est d'environ 4800 / mL, celle en germes revivifiables à 36°C d'environ 2900 / mL.

3.2.3. Résultats des laboratoires expert et collaborateurs

L'ensemble des résultats est présenté dans l'annexe 9.

Les résultats finaux obtenus par les participants par la méthode XplOrer64 ont été recalculés par le laboratoire expert à l'aide d'une nouvelle équation de calibration optimisée, transmise par le fabricant, en utilisant les temps de détection (DT) observés par les participants (ces DT étaient à renseigner par les participants dans le formulaire de résultats).

Les résultats des participants n°9, 10, 11 et 12 n'ont pas été exploités. En effet le participant n°9 a rencontré un problème de logiciel lors de l'analyse par méthode alternative, le participant n°10 rend des résultats aberrants par méthode alternative et les laboratoires n°11 et 12 des résultats anormaux par méthode normalisée. Les résultats des 8 autres laboratoires ont bien pu être exploités.

3.3. Interprétation statistique

3.3.1. Calcul du biais

Le tableau ci-dessous représente la valeur cible, la moyenne, l'écart-type de fidélité, le biais relatif et le biais de chaque niveau de contamination en log UFC/ 100 mL.

Niveaux	Bas	Moyen	Haut
Valeur cible	1,72	2,89	3,79
Moyenne niveau	1,86	2,91	3,63
Ecart-type de répétabilité	0,15	0,27	0,14
Ecart-type inter-séries	0,32	0,10	0,25
Ecart-type de fidélité	0,35	0,29	0,28
Biais relatif	8,04%	0,54%	-4,21%
Biais	0,14	0,02	-,016

La justesse est estimée par le biais qui varie entre -0,16 et 0,14 UFC/100 mL.

3.3.2. Profils d'exactitude

Le tableau ci-dessous présente les valeurs de tolérance et les limites de tolérance de la méthode alternative pour une valeur de probabilité de tolérance de 80% et une valeur de limite d'acceptabilité de 0,8 log. La figure 3 présente le tracé de ce profil d'exactitude.

Probabilité de tolérance	Limite d'acceptabilité	Niveaux	Bas	Moyen	Haut
		Concentration cible théorique moyenne (x)	1,72	2,89	3,79
		Limite de tolérance basse (b)	1,38	2,52	3,24
80%	0,8 en log	Limite de tolérance haute (h)	2,34	3,29	4,02
		Limite de tolérance basse différentielle (b-x)	-0,34	-0,37	-0,55
		Limite de tolérance haute différentielle (h-x)	0,62	0,40	0,23

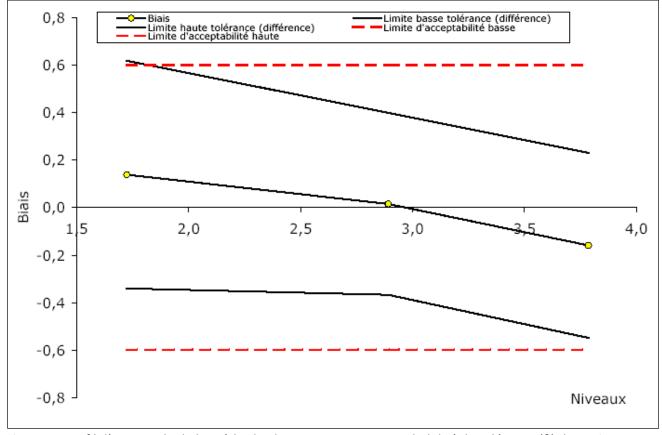


Figure 3 : profil d'exactitude de la méthode alternative avec une probabilité de tolérance (β) de 80% et une limite d'acceptabilité de 0,8 en log

3.4. Conclusion

Les résultats de 8 laboratoires participants ont pu être exploités dans le cadre de cette étude interlaboratoires.

L'étude du profil d'exactitude obtenu avec ces résultats révèle que la méthode alternative XplOrer64 est valide pour tous les niveaux (intervalle de tolérance compris entre les limites d'acceptabilité) pour une valeur de critère d'acceptabilité λ fixée à 0,6.

Pour des valeurs de λ moins élevées, la limite haute de l'intervalle de tolérance à bas niveau et la limite basse à haut niveau sont les premières bornes à sortir des limites d'acceptabilité (dès λ fixée à 0,5).

4. Conclusion

La méthode XplOrer64™ - CheckN'Safe™ Enterococci a été comparée à la méthode NF EN ISO 7899-1.

Les résultats permettent de conclure que :

- la linéarité de la méthode alternative est satisfaisante,
- l'exactitude relative de la méthode alternative par rapport à la méthode de référence est satisfaisante.

Le protocole général validé lors de l'étude initiale sur le domaine d'application « eaux de baignade » est apparu plus adapté à des échantillons de faible teneur en MES.

La corrélation entre la méthode de référence et la méthode alternative selon les 3 protocoles étudiés est apparue satisfaisante.

Les valeurs de répétabilité du protocole général (F100 mL) et du protocole spécifique 2 (Direct 1 mL) sont du même ordre et supérieures à celle de la méthode de référence.

Les biais moyens entre les deux méthodes (méthode alternative – méthode de référence) sont de :

- -0,155 log à -0,140 log pour le protocole général,
- -0,319 log pour le protocole spécifique 1 (F10 mL),
- 0,109 log pour le protocole spécifique 2 (Direct 1 mL).

Les résultats de spécificité sont satisfaisants.

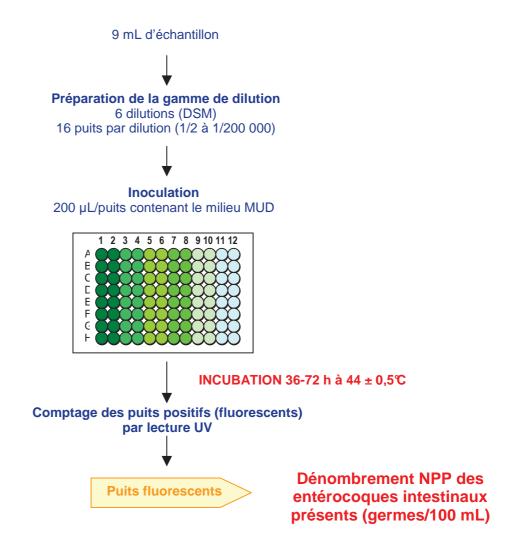
L'étude du profil d'exactitude obtenu avec les résultats de l'étude interlaboratoires révèle que la méthode alternative XplOrer64 est valide pour tous les niveaux (intervalle de tolérance compris entre les limites d'acceptabilité) pour une valeur de critère d'acceptabilité λ fixée à 0,6.

Pour des valeurs de λ moins élevées, la limite haute de l'intervalle de tolérance à bas niveau et la limite basse à haut niveau sont les premières bornes à sortir des limites d'acceptabilité (dès λ fixée à 0,5).

Fait à Massy, le 7 juillet 2015 François Le Nestour

ple Den

Responsable de l'Unité Innovation Biologie

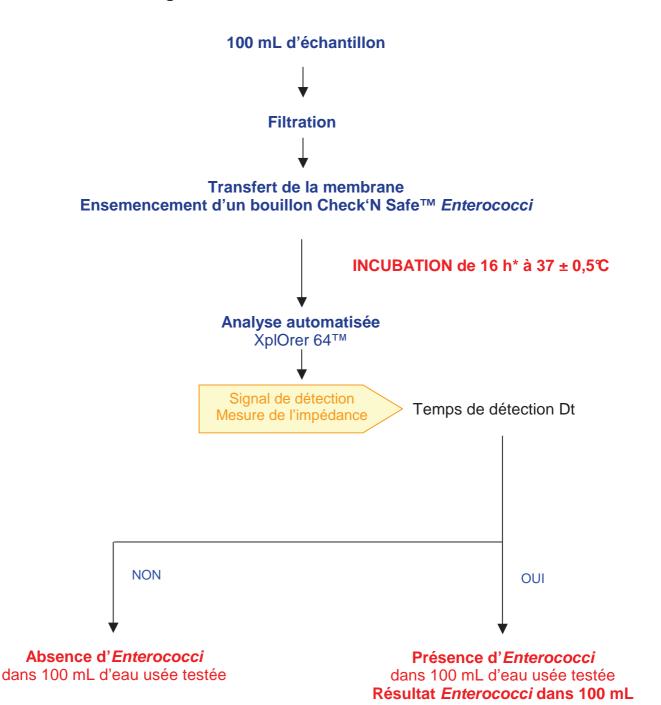

ANNEXE 1

PROTOCOLES ANALYTIQUES

NORME NF EN ISO 7899-1: 1999

Recherche et dénombrement des entérocoques intestinaux dans les eaux de surface et les eaux résiduaires

Part 1 : Méthode miniaturisée pour ensemencement en milieu liquide

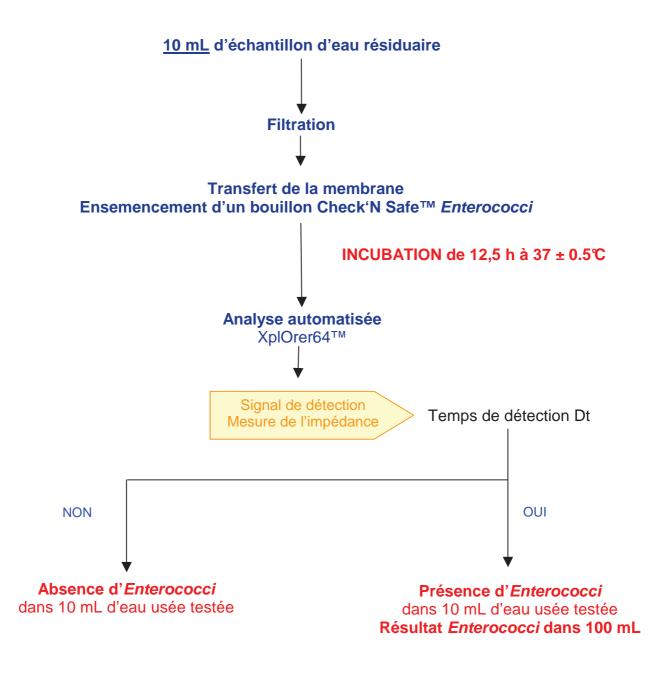


NPP: Nombre le plus probable

Méthode alternative : Méthode XplOrer64[™] – CheckN'Safe[™] *Enterococci*

Détection et quantification des entérocoques intestinaux

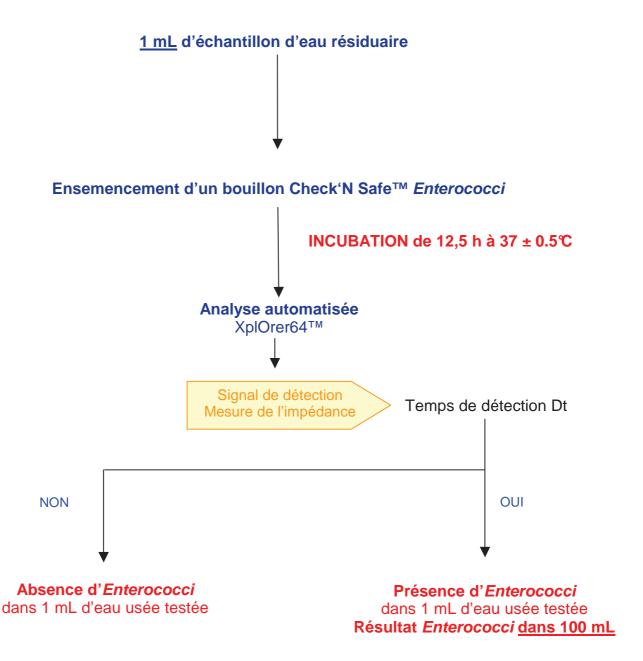
Protocole général, certifié AFNOR VALIDATION en 2009



^{*}Note: incubation de 12,5 h pour les eaux de baignade.

Méthode alternative : Méthode XplOrer64[™] – CheckN'Safe[™] *Enterococci*

Détection et quantification des entérocoques intestinaux


Protocole spécifique aux échantillons ayant une filtrabilité réduite

Méthode alternative : Méthode XplOrer64™ – CheckN'Safe™ *Enterococci*

Détection et quantification des entérocoques intestinaux

Protocole spécifique aux échantillons non filtrables

ANNEXE 2

EXACTITUDE RELATIVE RESULTATS 2009

Les cases grisées correspondent aux résultats non exploités

Résultats 2009

Domaine d'application : Eau douce superficielle

			Entérocoque		Entéroc	•
		(ba	actéries/100 n	nL)	(log (bactérie	s/100 mL))
Code	Echantillon*	NF EN ISO 7899-1	DT (heures) V3.0	XplOrer64 CheckN'Safe Enterococci V3.0	NF EN ISO 7899-1	XplOrer64 CheckN'Safe Enterococci V3.0
1 à 3	Eaux douce	<15	-	<28		
4 à 6	Eaux douce	<15	-	<28		
7	Eaux douce	<15	-	<28		
8 à 10	Eaux douce	1.50E+01	-	<28		
11	Eaux douce	1.50E+01	11.31	3.47E+01	1.18	1.54
12	Eaux douce	1.50E+01	11.27	3.56E+01	1.18	1.55
13	Eaux douce	1.50E+01	10.85	4.78E+01	1.18	1.68
14	Eaux douce	3.00E+01	11.36	3.37E+01	1.48	1.53
15	Eaux douce	4.60E+01	10.71	5.36E+01	1.66	1.73
16	Eaux douce	4.60E+01	10.64	5.69E+01	1.66	1.76
17	Eaux douce	6.10E+01	11.47	3.17E+01	1.79	1.50
18	Eaux douce	6.10E+01	10.85	4.78E+01	1.79	1.68
19	Eaux douce	6.10E+01	10.28	7.99E+01	1.79	1.90
20	Eaux douce	9.40E+01	10.53	6.28E+01	1.97	1.80
21	Eaux douce	9.40E+01	10.81	4.94E+01	1.97	1.69
22	Eaux douce	1.26E+02	9.82	1.33E+02	2.10	2.12
23	Eaux douce	2.13E+02	9.34	2.46E+02	2.33	2.39
24	Eaux douce	2.15E+02	9.47	2.06E+02	2.33	2.31
25	Eaux douce	2.32E+02	8.89	4.75E+02	2.37	2.68
26	Eaux douce	2.49E+02	8.35	1.17E+03	2.40	3.07
27	Eaux douce	2.49E+02	9.20	2.99E+02	2.40	2.48
28	Eaux douce	2.89E+02	9.86	1.26E+02	2.46	2.10
29	Eaux douce	3.86E+02	9.61	1.72E+02	2.59	2.23
30	Eaux douce	4.34E+02	9.47	2.06E+02	2.64	2.31
31	Eaux douce	4.34E+02	9.07	3.62E+02	2.64	2.56
32	Eaux douce	4.65E+02	8.91	4.61E+02	2.67	2.66
33	Eaux douce	4.76E+02	8.70	6.43E+02	2.68	2.81
34	Eaux douce	5.04E+02	8.60	7.59E+02	2.70	2.88
35	Eaux douce	5.34E+02	-	<28	2.73	
36	Eaux douce	5.34E+02	8.17	1.61E+03	2.73	3.21
37	Eaux douce	5.54E+02	8.55	8.25E+02	2.74	2.92
38	Eaux douce	5.65E+02	8.59	7.71E+02	2.75	2.89
39	Eaux douce	5.74E+02	9.36	2.39E+02	2.76	2.38
40	Eaux douce	5.88E+02	7.75	3.61E+03	2.77	3.56
41	Eaux douce	6.00E+02	8.40	1.07E+03	2.78	3.03
42	Eaux douce	6.33E+02	8.46	9.62E+02	2.80	2.98
43	Eaux douce	6.54E+02	9.60	1.74E+02	2.82	2.24
44	Eaux douce	8.14E+02	8.65	6.98E+02	2.91	2.84
45	Eaux douce	8.82E+02	8.22	1.47E+03	2.95	3.17
46	Eaux douce	9.94E+02	8.87	4.90E+02	3.00	2.69
47	Eaux douce	1.45E+03	8.69	6.54E+02	3.16	2.82
48	Eaux douce	1.48E+03	8.32	1.23E+03	3.17	3.09
49	Eaux douce	2.08E+03	7.98	2.30E+03	3.32	3.36
50	Eaux douce	2.15E+03	8.40	1.07E+03	3.33	3.03
51	Eaux douce	>350000	-	non exploité	0.00	0.00

^{*} Echantillons naturellement contaminés

Résultats 2009

Domaine d'application : Eau de mer

			Entérocoque ctéries/100 r		Entéroc (log (bactérie	
Code	Echantillon*	NF EN ISO 7899-1	DT (heures) V3.0	XplOrer64 CheckN'Safe Enterococci V3.0	NF EN ISO 7899-1	XplOrer64 CheckN'Safe Enterococci V3.0
52 à 110	Eaux de mer	<15	-	<28		
111 à 116	Eaux de mer	<15	-	non exploité		
117 à 126	Eaux de mer	1.50E+01	-	<28	1.18	
127	Eaux de mer	1.50E+01	-	<28	1.18	
128	Eaux de mer	1.50E+01	13.02	<28	1.18	
129	Eaux de mer	1.50E+01	11.53	4.5E+01	1.18	1.65
130	Eaux de mer	1.50E+01	11.10	5.5E+01	1.18	1.74
131	Eaux de mer	1.50E+01	-	<28	1.18	
132	Eaux de mer	1.50E+01	10.76	6.5E+01	1.18	1.81
133	Eaux de mer	1.50E+01	10.78	6.4E+01	1.18	1.81
134	Eaux de mer	1.50E+01	10.89	6.1E+01	1.18	1.79
135	Eaux de mer	1.50E+01	10.55	7.3E+01	1.18	1.86
136 à 140	Eaux de mer	3.00E+01	-	<28	1.48	
141	Eaux de mer	3.0E+01	11.75	4.1E+01	1.48	1.61
142	Eaux de mer	3.0E+01	10.28	8.5E+01	1.48	1.93
143	Eaux de mer	3.0E+01	9.39	1.5E+02	1.48	2.18
144 à 147	Eaux de mer	3.0E+01	-	<28	1.48	
148	Eaux de mer	4.6E+01	-	<28	1.66	
149	Eaux de mer	4.6E+01	12.14	3.6E+01	1.66	1.56
150	Eaux de mer	4.6E+01	-	<28	1.66	
151	Eaux saumâtre	4.6E+01	11.18	5.3E+01	1.66	1.72
152	Eaux de mer	6.1E+01	-	<28	1.79	
153	Eaux de mer	6.1E+01	-	<28	1.79	
154	Eaux de mer	7.7E+01	11.26	3.6E+01	1.89	1.56
155 à 156	Eaux de mer	7.7E+01	-	<28	1.89	
157	Eaux saumâtre	9.4E+01	-	<28	1.97	
158	Eaux de mer	1.4E+02	11.43	3.2E+01	2.16	1.51
159	Eaux de mer	2.9E+02	9.61	1.3E+02	2.46	2.11
160	Eaux de mer	6.5E+02	10.59	6.0E+01	2.81	1.78

^{*} Echantillons naturellement contaminés

Annexe 3- Souches stressées et contaminations artificielles

Nº échantillon	Code souche	Souche	Origine	Stress appliqué	Intensité du stress
eau de mer 1	ENTC.2.1	Enterococcus faecium	industrie laitière	10min à -80°C + 10min à 37°C + 10min à -80°C + 10min à 37°C	0,5
eau de mer 2	ENTC.2.1	Enterococcus faecium	industrie laitière	10min à -80°C + 10min à 37°C + 10min à -80°C + 10min à 37°C	0,5
eau de mer 3	ENTC.2.3	Enterococcus faecium	Eau	10min à -80°C + 10min à 37°C + 10min à -80°C + 10min à 37°C	0,5
eau de mer 4	ENTC.2.3	Enterococcus faecium	Eau	10min à -80°C + 10min à 37°C + 10min à -80°C + 10min à 37°C	0,5
eau de mer 5	ENTC.1.2	Enterococcus faecalis	ATCC 33186	2 min hypochlorite de sodium dilué au 1/10000éme	0,6
eau de mer 6	ENTC.1.2	Enterococcus faecalis	ATCC 33186	2 min hypochlorite de sodium dilué au 1/10000éme	0,6
eau de mer 7	ENTC.1.2	Enterococcus faecalis	ATCC 33186	2 min hypochlorite de sodium dilué au 1/10000éme	0,6
eau de mer 8	ENTC.3.2	Enterococcus hirae	Eau de rivière	4 j à 4°C + (5 min à -80°C + 5 min à 36°C) x2	0,8
eau de mer 9	ENTC.3.2	Enterococcus hirae	Eau de rivière	4 j à 4°C + (5 min à -80°C + 5 min à 36°C) x2	0,8
eau de mer 10	ENTC.3.2	Enterococcus hirae	Eau de rivière	4 j à 4°C + (5 min à -80°C + 5 min à 36°C) x2	0,8
eau douce 1	ENTC.1.3	Enterococcus faecalis	CIP 103214	2 min hypochlorite de sodium dilué au 1/10000éme	0,8
eau douce 2	ENTC.1.3	Enterococcus faecalis	CIP 103214	2 min hypochlorite de sodium dilué au 1/10000éme	0,8
eau douce 3	ENTC.1.3	Enterococcus faecalis	CIP 103214	2 min hypochlorite de sodium dilué au 1/10000éme	0,8
eau douce 4	ENTC.4.1	Enterococcus avium	Eau (Allemagne)	3 semaines à 5°C	0,8
eau douce 5	ENTC.4.1	Enterococcus avium	Eau (Allemagne)	3 semaines à 5°C	0,8
eau douce 6	ENTC.4.1	Enterococcus avium	Eau (Allemagne)	3 semaines à 5°C	0,8
eau douce 7	ENTC.5.1	Enterococcus gallinarum	Eau	3 semaines à 5°C	0,7
eau douce 8	ENTC.5.1	Enterococcus gallinarum	Eau	3 semaines à 5°C	0,7
eau douce 9	ENTC.3.1	Enterococcus hirae	CIP 58.55	4 j à 4°C + (5 min à -80°C + 5 min à 36°C) x2	0,6
eau douce 10	ENTC.3.1	Enterococcus hirae	CIP 58.55	4 j à 4°C + (5 min à -80°C + 5 min à 36°C) x2	0,6

Institut Scientifique d'Hygiène et d'Analyse

ANNEXE 4

EXACTITUDE RELATIVE + ESSAIS COMPLEMENTAIRES

Les cases grisées correspondent aux résultats non exploités.

Domaine d'application : eaux usées

Catégorie (Classification du BT*) Code échantillon Non filtrable

R1 : réplicat 1 R2 : réplicat 2

b/100 mL : bactéries dans 100 mL DT : temps de détection

inférieur à 10 b/100 mL (seuil méthode, protocole général) √ [√] 0

inférieur à 10 b/100 mL (seuil méthode- protocole spécifique 2) <100

inférieur à 10 b/100 mL (seuil méthode- protocole spécifique 1)

inférieur à 58 UFC/PE (seuil méthode de référence)

* Classification des catégories d'eau par type

		Eau de réseau de distribution
	Faible teneur en MES	Eau de dialyse
Eaux traitées	B	Eau de bassins de piscine
-		Eau de circuits aéroréfrigérants
	Forte teneur en MES	Eau de circuits aéroréfrigérants
	q	Eau de process
		Eau résiduaire traitée
		Eau souterraine
	Faible teneur en MES	Eau minérale
Eaux non traitées	co.	Eau de source
2		Eau thermale
	Forte teneur en MES	Eau superficielle
	q	Eau de mer
		Eau résiduaire brute

Résultats détaillés

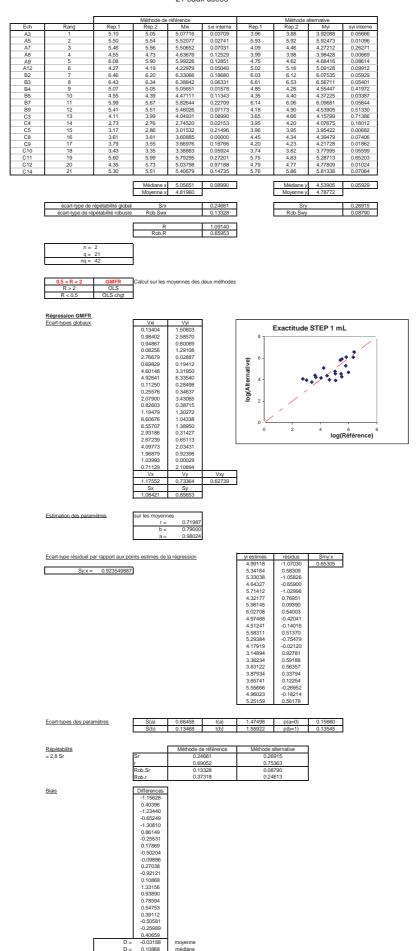
Domaine d'application : eaux usées

Colore								NF EN ISO 7899-1	D 7899-1				Méthode	Méthode alternative XplOrer64 CheckN'Safe Enterococci	r64 CheckN'S	fe Enterococci
Code				MES		Lecture après 3	5 heures			Lecture après 7	72 heures			Ensemenc	Ensemencement 1 mL	
1 At 11 Highware the setting of the control of		S		eu	Résulta	ts NPP	Enterococc	i (b/100 ml)	Résulta	ats NPP	Enterococ	i (b/100 mL)		R1		R2
				mg/L	22	R2	R	R2	2	22	R1	R2	DT (heures)	Réponse dans 100 mL	DT (heures)	Réponse dans 100 mL
	110105step1	1 A1	T	2	10/2/0/0/0	9/2/0/0/0/0	1.01E+03	8.78E+02	10/2/0/0/00	9/2/0/0/00	1.01E+03	8.78E+02	10.45	6.76E+03		<100
	110110step2			2	0/0/0/0/0/9	0/0/0/0/0/2	4.12E+02	5.00E+02	0/0/0/0/0/9	0/0/0/0/0/2	4.12E+02	5.00E+02	•	<100	,	<100
	110110step3			334	16/16/11/2/1/0	16/16/11/0/0/0	1.27E+05	9.65E+04	16/16/11/2/1/0	16/16/12/0/0/0	1.27E+05	1.12E+05	10.15	9.14E+03	10.33	7.60E+03
6 A R. Elmusted into, Cyanigue 175 Foll of Hold May 1 176 Foll of Hold May 1 </td <td>110111step4</td> <td></td> <td>_</td> <td>16</td> <td>0/0/0/0/0/0</td> <td>1/0//0/0/0/0</td> <td><58</td> <td>5.80E+01</td> <td>0/0/0/0/0/0</td> <td>1/0/0/0/0/0</td> <td><58</td> <td>5.80E+01</td> <td></td> <td><100</td> <td></td> <td><100</td>	110111step4		_	16	0/0/0/0/0/0	1/0//0/0/0/0	<58	5.80E+01	0/0/0/0/0/0	1/0/0/0/0/0	<58	5.80E+01		<100		<100
	110111step5			175	16/16/14/6/2/1	16/16/15/5/0/0	3.17E+05	2.96E+05	16/16/14/6/2/1	16/16/15/5/2/0	_	3.47E+05	7.22	8.56E+05	7.25	8.26E+05
	110112step6			2	3/0/0/0/0/0	2/0/0/0/0/0	1.85E+02	3.30E+02	3/0/0/0/0/0	2/0/0/0/0/0	1.85E+02	3.30E+02		<100		<100
8 AR Emune benute Bosechape 51 Giff Stiff Wild Wild Stiff Stiff Stiff Stiff Wild Wild Stiff Stiff Stiff Stiff Wild Wild Stiff	110112step7			292	16/16/16/2/0/0	16/16/16/4/0/0	2.86E+05	3.60E+05	16/16/16/2/0/0	16/16/16/4/0/0	2.86E+05	3.60E+05	9.89	1.22E+04	9.23	2.87E+04
9 And Ellucarde station Natil Benguine 36 Air Billion Wall Benguine 36 Air Billion Natil Benguine 46 Air Billion Wall Benguine 36 Air Billion Wall Benguine 46 Air Billion Wall Wall Wall Wall Wall Wall Wall Wal	110114step8			51	16/16/3/1/0/0	16/16/7/0/0/0	3.53E+04	5.31E+04	16/16/3/1/0/0	16/16/7/0/0/0	3.53E+04	5.31E+04	10.09	9.75E+03	10.11	9.54E+03
	110114step9		П	366	16/16/16/10/4/0	16/16/16/9/1/0	1.21E+06	7.97E+05	16/16/16/10/4/0	16/16/16/9/1/0	_	7.97E+05	8.79	5.56E+04	8.97	4.20E+04
				4	16/6/1/0/0/0	16/5/0/0/0/0	5.17E+03	4.06E+03	16/6/1/0/0/0	16/6/0/0/0/0	5.17E+03	4.63E+03		<100	,	<100
	Н			7	16/1/0/0/0/0	13/4/0/0/00	2.56E+03	1.85E+03	16/2/0/0/0/0	13/5/0/0/0/0	2.86E+03	2.00E+03		<100		<100
13 BI Effluent de station. Sommaning 21 14/67/00/00 11/27/00/00 11/27/E-03 14/27/E-03 14/27/E-03 <t< td=""><td></td><td></td><td></td><td>7</td><td>16/12/5/1/0/0</td><td>16/11/1/0/0/0</td><td>1.84E+04</td><td>1.07E+04</td><td>16/12/5/1/0/0</td><td>16/13/1/1/0/0</td><td>1.84E+04</td><td>1.56E+04</td><td>8.41</td><td>1.05E+05</td><td>8.23</td><td>1.45E+05</td></t<>				7	16/12/5/1/0/0	16/11/1/0/0/0	1.84E+04	1.07E+04	16/12/5/1/0/0	16/13/1/1/0/0	1.84E+04	1.56E+04	8.41	1.05E+05	8.23	1.45E+05
14 BR Earu use brune. Sanktorin 311 (Firld 16 18 20 20 EC) 1 (Firld 16 18 20 EC) 1 (Firl				2	14/6/1/0/0/0	11/3/0/0/00	2.77E+03	1.27E+03	14/6/1/0/0/0	11/3/0/0/0/0	2.77E+03	1.27E+03		<100		<100
			П	311	16/16/16/16/2/0	16/16/16/12/2/2	2.90E+06	1.58E+06	16/16/16/16/2/0			1.58E+06	7.02	1.08E+06	98.9	1.31E+06
15 15 15 15 15 15 15 15				287		16/16/16/14/4/0	2.71E+06	2.21E+06			_	2.21E+06	5.91	4.03E+06	90.9	3.38E+06
17 BS Enu usée bruite. Couscirie B4 Histólativolo 26E+ch 24E+ch 14Fistolo 67E-ch 18Fistolo 67E-ch 18Fistolo 68E Bill Bill Bill Bill Bill Enu usée bruite. Ossiernies 22 1/10/00/00 20/00/00/00 3.7E-ch 1.8E-ch 1.8E-ch<				264	16/16/11/2/0/0	16/16/10/3/0/0	1.17E+05	1.11E+05	16/16/11/2/0/0	16/16/10/3/0/0		1.11E+05	8.64	7.10E+04	9.57	1.81E+04
18 BB (Filluend de station, Solesness) 2 1,000,000,00 2,000,000,00 4,000,000,00 2,400,000,00 3,000,000,00 5,800,000 7,100,000 <t< td=""><td></td><td></td><td></td><td>84</td><td>16/15/7/0/0/0</td><td>16/15/3/0/0/0</td><td>3.56E+04</td><td>2.46E+04</td><td>16/15/7/0/0/0</td><td>16/15/3/0/0/0</td><td>3.56E+04</td><td>2.46E+04</td><td>9.41</td><td>2.23E+04</td><td>9.33</td><td>2.49E+04</td></t<>				84	16/15/7/0/0/0	16/15/3/0/0/0	3.56E+04	2.46E+04	16/15/7/0/0/0	16/15/3/0/0/0	3.56E+04	2.46E+04	9.41	2.23E+04	9.33	2.49E+04
19 BV Eau usée brute, Bois Grenér 22 \$(4) (6) (6) (1) (1) (6) (6) (1) (1) \$(4) (6) (6) (1) (1) \$(4) (6) (6) (1) (1) \$(4) (6) (6) (1) \$(4) (6) (6) (1) \$(4) (6) (6) (1) \$(4) (6) (6) (1) \$(4) (6) (6) (1) \$(4) (6) (6) (1) \$(4) (6) (6) (1) \$(4) (6) (6) (1) \$(4) (6) (6) (1) \$(4) (6) (6) (1) \$(4) (6) (6) (6) (6) \$(4) (6) (6) (6) (6) \$(4) (6) (6) (6) (6) \$(4) (6) (6) (6) (6) \$(4) (6) (6) (6) (6) \$(4) (6) (6) (6) (6) \$(4) (6) (6) (6) \$(4) (6) (6) (6) (6) \$(4) (6) (6) (6) (6) \$(4) (6) (6) (6) (6) \$(4) (6) (6) (6) (6) \$(4) (6) (6) (6) (6) \$(4) (6) (6) (6) (6) \$(4) (6) (6) (6) (6) (6) \$(4) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6				2	1/0/0/0/0/0	2/0/0/0/0/0	5.80E+01	1.85E+02	1/0/0/0/0/0			1.85E+02		<100		<100
20 BB Effluent de station, Beauvoè en Cambress 27 131/10/00/00 144E+03 55E+02 131/10/00/00 173/10/00/00				222	16/16/16/11/0/0	16/16/16/6/0/0	9.71E+05	4.63E+05	16/16/16/11/0/0		_	4.63E+05	6.82	1.37E+06	6.98	1.14E+06
21 B9 Effluent-Conserveries SPIOIZI 348 61/16/81/00 61/16/81/00 1/36E+02 4/36E+03 16/16/16/10 16/16/81/00 1/36E+02 3/36E+05 3/36E				27	13/1/0/0/0/0	6/2/0/0/0/0	1.44E+03	5.56E+02	13/1/0/0/0/0	0/0/0/0/8/2	_	5.56E+02	,	<100	10.39	7.16E+03
22 B10 Effluent- Eau épurée St Pol ZI 8 2/00/00/00 1/18E-02 -68 3/00/00/00 1/19E-02 -68 3/00/00/00 -68 -68 3/00/00/00 -68				348	16/15/8/1/0/0	16/16/9/1/0/0	4.24E+04	7.95E+04	16/16/16/1/0/0	16/16/15/6/0/0	_	3.24E+05	9.72	1.50E+04	8.57	7.98E+04
23 CT Effluent de station, Bienne 1 0/00/00/00 -68 -68 0/00/00/00 -68 -58 24 C.2 Effluent de station, Avesne sur Helpes 2 11/40/00/00 1/38E+03 11/40/00/00 1/38E+03 11/40/00/00 1/38E+03 2.02E+03 11/40/00/00 1/38E+03 1/		_		80	2/0/0/0/0/0	0/0/0/0/0/0	1.19E+02	<58	3/0/0/0/0/0	0/0/0/0/0/0	1.19E+02	<58	,	<100	,	<100
24 C2 Effluent de station, Avesne sur Helpes 2 11440/00/00 1.38E+03 2.02E+03 1.1440/00/00 1.38E+03 2.02E+03 2.0				-	0/0/0/0/0/0	0/0/0/0/0/0	<58	<58	0/0/0/0/0/0	0/0/0/0/0/0	<58	<58	,	<100	11.25	3.60E+03
25 C3 Effluent de station, Boullens 3 16/10/37/1/10 130E+04 968E+03 16/10/37/1/10 16/93/00/00 130E+04 968E+03 16/10/37/1/10 130E+02 576E+02 576E+02 576E+02 5730/00/00 130E+02 576E+02 576E+03 130E+03 130E+02 130E+03				2	11/4/0/0/0/0	14/3/0/0/0/0	1.38E+03	2.02E+03	11/4/0/0/0/0	14/3/0/0/0/0	1.38E+03	2.02E+03	9.73	1.50E+04		<100
26 C4 Effluent de station, Bavay 2 5/30/0000 7/11/0000 5.37E+02 5/30/0000 7/10/0000 5.37E+02 5/30/0000 7/30/00000 7/30/0000 7/30/0000 7/30				က	16/10/3/1/1/0	16/9/3/0/0/0	1.30E+04	9.68E+03	16/10/3/1/1/0	16/9/3/0/0/0	1.30E+04	9.68E+03	10.92	4.50E+03	8.90	4.60E+04
27 CS Effluent de station, La Longueville <1 12/30/00/00 7/30/00/00 147F+03 7/30F+02 12/30/00/00 7/30/00/0				2	2/3/0/0/0/0	7/1/0/0/0/0	5.37E+02	5.76E+02	0/0/0/0/8/9	2/1/0/0/0/0	5.37E+02	5.76E+02	10.18	8.90E+03	69.6	1.60E+04
28 CG Effluent, Bérhune 7 0/0/0/0/00 -58 -58 0/0/0/00 -58 -58 29 C7 Effluent de station, Bierne 4 2/0/0/00/00 1/0/0/00/00 1/0/0/0/0 1/0/0/0/0 1/0/0/0/0 1/0/0/0/0 1/0/0/0/0 1/0/0/0/0 1/0/0/0/0 1/0/0/0/0 1/0/0/0/0 1/0/0/0/0	+	_		7	12/3/0/0/0/0	0/0/0/0/8/2	1.47E+03	7.30E+02	12/3/0/0/0/0	0/0/0/0/8/2	1.47E+03	7.30E+02	10.15	9.10E+03	10.17	8.90E+03
29 C7 Effluent de station, Biarne 4 2/00/00/00 1/18EAQ 5.88E+01 3/00/00/00 1/8EAQ 5.88E+01 3/00/00/00 1/8EAQ 5.88E+01 3/00/00/00 1/8EAQ 5.88E+01 3/00/00/00 1/8EAQ 5.88E+03 1/8EAQ 5.88E+03 1/8EAQ 5.88E+03 1/8EAQ 1/8EAQ 5.88E+03 1/8EAQ 1/8EAQ 5.88E+03 1/8EAQ 1/8EAQ </td <td>+</td> <td>_</td> <td></td> <td>\</td> <td>0/0/0/0/0/0</td> <td>0/0/0/0/0/0</td> <td>×28</td> <td>×28</td> <td>0/0/0/0/0/0</td> <td>0/0/0/0/0/0</td> <td>×28</td> <td>×28</td> <td>11.90</td> <td>2.60E+03</td> <td></td> <td><100</td>	+	_		\	0/0/0/0/0/0	0/0/0/0/0/0	×28	×28	0/0/0/0/0/0	0/0/0/0/0/0	×28	×28	11.90	2.60E+03		<100
30 CB Effluent de station, Le Caracu Cambresis 2 16/20/00/00 5.38E+03 3.58E+03 16/50/00/00 4.06E+03 4.06E+03 4.06E+03 4.06E+03 31 CSB Effluent de station, Reix en Cambresis 3 16/70/00/00 5.38E+03 3.28E+03 16/50/00/00 3.56E+03 3.26E+03 3.56E+03 3.56C+03	+	4	\neg	4	2/0/0/0/0/0	1/0/0/0/0/0	1.19E+02	5.80E+01	3/0/0/0/00	1/0/0/0/0/0	1.85E+02	5.80E+01		<100	. :	<100
Effluent de station, Beauvois en Cambresis 3 16/7/00/000 15/6/10/0000 15/6/10/0000 15/7/10/0000 15/6/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/000 15/7/10/0000 15/7/10/10/000 15/7/10/0000 15/7/10/0000 15/7/10/0000 15/7/10/10/000 15/7/10/10/000 15/7/10/10/10/10/10/10/10/10/10/10/10/10/10/	+	4	T	.7	16/2/0/0/0/0	16/4/0/0/0/0	Z.86E+03	3.59E+03	0/0/0/0/91	16/5/0/0/0/0	4.06E+03	4.06E+03	9.26	Z.80E+04	9.43	Z.Z0E+04
32 C10 Entirent to Sation, Beauvois en Cambresis 3.9 1/37/10/200 1/37/10/200 2.24E+04 3.98E+05 3.98E+05 <t< td=""><td>+</td><td>+</td><td></td><td>ო ი</td><td>16/7/0/0/0/0</td><td>15/6/0/0/0/0</td><td>5.31E+03</td><td>3.24E+03</td><td>16/8/0/0/0/0/0</td><td>15/7/0/0/0/0</td><td>6.14E+03</td><td>3.56E+03</td><td>9.65</td><td>1.60E+04</td><td>9.62</td><td>1.70E+04</td></t<>	+	+		ო ი	16/7/0/0/0/0	15/6/0/0/0/0	5.31E+03	3.24E+03	16/8/0/0/0/0/0	15/7/0/0/0/0	6.14E+03	3.56E+03	9.65	1.60E+04	9.62	1.70E+04
3.5 C11 Call Usee Dute, Technics 3.1 Followard To an arrange of the Control of t	t	+		0.50	15/4/0/0/0/0	10/1/1/0/0/0	2001-03	2.222.403	10/4/0/0/0/0	10/11/11/01/01	2005-06	2.222.403	10.03	0.3001	7.0	0.0001403
35 C13 Eau usee brute, Cardignies 19 371/00/00/0 400/00/00 247E-02 2.55E-02 371/00/00 247E-02 3.24E-05 671/10/00/0 247E-02 2.55E-02 3.24E-05 671/10/00/0 247E-02 3.24E-05 7.67/10/00/0 2.47E-04 3.24E-05 7.67/10/00/0 2.47E-04 3.24E-05 7.67/10/00/0 2.47E-04 3.24E-05 3.24E-05 7.67/10/00/0 2.47E-04 3.24E-05 3.24F-00 3.24E-05 3.24F-00 3.24E-05 3.24F-02 <	+	+	-	28	16/15/2/0/0/0	16/16/7/0/0/0	2.33E+03	5.31F±05	16/15/2/0/0/	16/16/7/0/0/0	2.24E+04	5.31E+05	8.73	6.10F+04	9 75	5.70E+04
36 C14 Eau usée brute, Etroeungt 172 16/16/14/2/10 16/16/15/6/00 2.01E-05 3.24E-05 16/16/14/2/10 16/16/14/2/10 3.24E-05 3.24E-05 16/16/14/2/10 16/16/14/2/10 3.24E-05 3.24E-05 16/16/14/2/10 16/16/14/2/10 3.24E-05 3.24E-	t	+		19	3/1/0/0/0/0	4/0/0/0/0/0	2.47E+02	2.55E+02	3/1/0/0/0/0	4/0/0/0/0/0	2.47E+02	2.55E+02		<100	14.30	4.50E+02
37 C15 Eau usée brute. Socx 38 16/71/10/00 16/9/20/00 5.94E-03 8.80E-03 16/71/10/00 16/11/20/00 1.70E-04 1.70E-03 1.80E-03 16/71/10/00 16/11/20/00 1.70E-03 1.80E-03 16/71/10/00 16/11/20/00 2.70E+03 1.80E-03 16/11/20/00 1.70E-03 1.80E-03 16/11/20/00 2.70E+03 1.80E-03 16/11/20/00 2.70E-03 1.80E-03 1.80E-03 <th< td=""><td>t</td><td>+</td><td></td><td>172</td><td>16/16/14/2/1/0</td><td>16/16/15/6/0/0</td><td>2.01E+05</td><td>3.24E+05</td><td>16/16/14/2/1/0</td><td>16/16/15/6/0/0</td><td>2.01E+05</td><td>3.24E+05</td><td>7.54</td><td>5.80E+05</td><td>7.36</td><td>7.30E+05</td></th<>	t	+		172	16/16/14/2/1/0	16/16/15/6/0/0	2.01E+05	3.24E+05	16/16/14/2/1/0	16/16/15/6/0/0	2.01E+05	3.24E+05	7.54	5.80E+05	7.36	7.30E+05
38 DT Effluent de station, Beauvois en Cambresis 18 15/4/0/0/0/0 14/2/0/0/0/0 2.70E+03 1.86E+03 15/4/0/0/0 14/2/0/0/0 2.70E+03 1.86E+03 15/4/0/0/0 1.86E+03	H	┝		38	16/7/1/0/0/0	16/9/2/0/0/0	5.94E+03	8.80E+03	16/7/1/0/0/0	16/11/2/0/0/0	5.94E+03	1.17E+04		<100		<100
39 D2 Effluent de station, Bierne 6 1/00/00/00 3/1/0/00/00 5.80E+01 2.47E+02 1/0/00/00 3/1/0/00/00 2.47E+02 1/0/00/00 3/1/0/00/00 2.47E+02 1/0/00/00 3/1/0/00/00 2.47E+02 1.59E+03 3/1/0/00/00 2.47E+02 3/1/0/00/00 2.47	Н	L		18	15/4/0/0/0/0	14/2/0/0/0/0	2.70E+03	1.86E+03	15/4/0/0/0/0	14/2/0/0/0/0	2.70E+03	1.86E+03		<100		<100
40 D3 Effluent de station, Beauvois en Cambresis 14 9/20/00/00 12/4/0/00/00 8.78E+02 1.59E+03 9/20/00/00 12/4/0/00/00 8.78E+02 1.59E+03 9/20/00/00 12/4/0/00/00 8.78E+02 1.59E+03 9/20/00/00 12/4/0/00/00 8.78E+02 1.5E+02 3/1/00/00 1.24/00/00 2.47E+02 3/1/00/00 7/00/00 2.47E+02 2/1/00/00 7/00/00 2.47E+02 2/1/00/00 1.09E+02 2/1/00/00 1.09E+02 2/1/00/00 1.09E+02 2/1/00/00 1.09E+02	H	_		9	1/0/0/0/0/0	3/1/0/0/0/0	5.80E+01	2.47E+02	1/0/0/0/0/0	3/1/0/0/0/0	5.80E+01	2.47E+02		<100		<100
41 D4 Effluent de station, Bantouzelle 8 3/1/0/0/0/0 6/0/0/0/0 2.47E+02 4.12E+02 3/1/0/0/0 7/0/0/0/0 2.47E+02 3/1/0/0/0 7/0/0/0/0 2.47E+02 3/1/0/0/0 2/1/0/0/0 <th< td=""><td>Н</td><td></td><td></td><td>41</td><td>9/2/0/0/0/0</td><td>12/4/0/0/0/0</td><td>8.78E+02</td><td>1.59E+03</td><td>9/2/0/0/0/0</td><td>12/4/0/0/0/0</td><td>8.78E+02</td><td>1.59E+03</td><td></td><td><100</td><td></td><td><100</td></th<>	Н			41	9/2/0/0/0/0	12/4/0/0/0/0	8.78E+02	1.59E+03	9/2/0/0/0/0	12/4/0/0/0/0	8.78E+02	1.59E+03		<100		<100
42 D5 Effluent de station, Bierne 6 21/10/01/01/0 20/01/01/01/0 1.80E+02 1.19E+02 21/10/01/00 20/01/01/01/0 1.80E+02 21/10/01/01/0 20/01/01/01/0 1.80E+04 20/01/01/01/0 1.80E+04				œ	3/1/0/0/0/0	0/0/0/0/0/9	2.47E+02	4.12E+02	3/1/0/0/0/0	0/0/0/0/0/2	2.47E+02	5.00E+02				
43 D6 Effluent de station, Steene 9 16/13/47/10/0 16/15/67/10/0 5.17E+04 16/13/47/10/0 16/16/67/10/0 5.17E+04 16/13/47/10/0 16/16/67/10/0 5.17E+04 16/16/67/10/0 5.17E+04 16/16/67/10/0 5.17E+04 16/16/67/10/0 16/16/6	Н		П	9	2/1/0/0/0/0	2/0/0/0/0/0	1.80E+02	1.19E+02	2/1/0/0/0/0	2/0/0/0/0/0	1.80E+02	1.19E+02				
44 D7 Effluent de station, Landrecies 8 16/16/6/1/0/0 16/16/6/1/0/0 5.17E+04 5.17E+04 16/16/6/1/0/0 16/16/7/1/0/0 5.17E+04				6	16/13/4/1/0/0	16/15/1/0/0/0	1.99E+04	2.04E+04	16/13/4/1/0/0	16/16/1/0/0/0	1.99E+04	2.56E+04				
		_	7 Effluent de station, Landrecies	80	16/16/6/1/0/0	16/16/6/1/0/0	5.17E+04	5.17E+04	16/16/6/1/0/0	16/16/7/1/0/0	5.17E+04	5.94E+04				

Résultats détaillés

Domaine d'application : eaux usées

					Méthode a	Méthode alternative XpIOrer64 CheckN'Safe Enterococci	64 CheckN'S	afe Enterococci		
				Filtratio	Filtration 10 mL			Filtration 100 mL	100 mL	
		Code		R1		R2		R1		R2
			DT (hellres)	Réponse	DT (helires)	Réponse	DT (helires)	Réponse	TQ (helires)	Réponse
110105step1	1	A1	10.87	4.71E+02	10.07	9.96E+02	8.89	4.75E+02	9.02	3.90E+02
110110step2	2	A2		<10	11.04	4.15E+02	9.13	3.31E+02	9.75	1.44E+02
110110step3	က	A3	7.84	3.02E+04	7.83	3.08E+04				
110111step4	4	A4		<10		<10		۲>		₹
110111step5	2	A5	7.36	7.25E+04	7.48	6.29E+04				
110112step6	9	A6	•	<10		<10	9.80	1.36E+02	9.32	2.52E+02
110112step7	7	A7	6.92	1.22E+05	7.04	1.06E+05				
110114step8	80	A8	8.92	4.54E+03	8.95	4.33E+03				
110114step9	6	A9	5.50	6.55E+05	7.27	8.07E+04				
110118step10	10	A10	9.36	2.39E+03	10.16	9.04E+02	7.86	2.90E+03	7.99	2.26E+03
110118step11	1	A11	9.31	2.56E+03	10.88	4.67E+02	8.39	1.09E+03	7.93	2.53E+03
110118step12	12	A12	8.47	9.46E+03	8.33	1.21E+04	7.27	8.07E+03	7.23	8.46E+03
110118step13	13	B1	9.94	1.15E+03	10.31	7.75E+02	8.93	4.47E+02		⊽
110119step14	14	B2	6.32	2.48E+05	6.49	2.03E+05				
110119step15	15	B3	6.62	1.74E+05	5.86	4.28E+05				
110119step16	16	B4	7.03	1.07E+05	7.07	1.02E+05				
110119step17	17	B5	7.63	5.27E+04	7.21	8.66E+04	6.26	2.67E+04	5.21	9.24E+04
110125step18	18	B6	•	<10		<10	10.34	7.50E+01	10.34	7.50E+01
110125step19	19	B7	6.38	2.31E+05	66.9	1.12E+05				
110125step20	20	B8	9.84	1.29E+03	9.87	1.25E+03	6:29	1.80E+04	7.65	5.15E+03
110125step21	21	B9		<10		<10				
110125step22	22	B10		<10		<10	10.25	8.20E+01	10.12	9.40E+01
110126step23	23	5		<10	11.43	3.20E+02	9.30	2.60E+02	11.22	3.70E+01
110126step24	24	C2	9.40	2.30E+03		<10	8.05	2.00E+03	8.08	1.90E+03
110126step25	22	C3	9.23	2.90E+03	89.6	1.60E+03	7.99	2.20E+03	7.62	5.40E+03
110126step26	26	C4	10.54	6.20E+02	10.91	4.60E+02	8.38	1.10E+03	9.49	2.00E+02
110126step27	27	C5	69.6	1.60E+03	9.92	1.20E+03	8.51	8.90E+02	8.36	1.10E+03
110131step28	28	90	11.20	3.70E+02		<10	•	۲		⊽
110131step29	29	C7	11.45	3.20E+02	11.00	4.30E+02	10.17	9.00E+01	9.20	3.00E+02
110131step30	30	83	8.93	4.50E+03	8.89	4.70E+03	8.72	6.30E+02	7.37	7.20E+03
110131step31	31	65	8.74	6.00E+03	8.82	5.30E+03	8.43	1.00E+03	7.14	9.40E+03
110131step32	32	C10	8.90	4.70E+03	8.93	4.50E+03	8.11	1.80E+03	7.33	7.50E+03
110131step33	33	C11	7.71	3.40E+04		<10				
110131step34	34	C12	8.34	1.20E+04	8.67	6.70E+03				
110131step35	32	C13	11.19	3.70E+02	10.97	4.40E+02				
110131step36	36	C14	8.06	2.00E+04	7.88	2.80E+04				
110131step37	37	C15		<10		<10				
110204step38	38	7		<10		<10		۲		⊽
110204step39	39	D2		<10		<10		.^		∇
110204step40	40	D3		<10		<10	13.60	8.40E+00		∇
110207step41	41	D4					8.83	5.20E+02	8.84	5.10E+02
110207step42	45	D2					8.96	4.30E+02	8.62	7.30E+02
110207step43	43	D6					7.30	7.80E+03	8.61	7.50E+02
110207step44	4	D7					5.93	4.00E+04	90.9	3.40E+04


Synthèse des résultats [log(Enterococci/100 mL)]

Domaine d'application : eaux usées

				NF EN E	NF EN ISO 7899-1		Méthode a	Méthode alternative XpIOrer64 CheckN'Safe Enterococci	64 CheckN'Safe E	nterococci	
	Code	Echantillon d'eau	MES en	Lecture après	Lecture après 72 h d'incubation	Ensemenc	Ensemencement 1 mL	Filtratio	Filtration 10 mL	Filtration	Filtration 100 mL
	_		mg/L	Enterococci	Enterococci (log b/100 mL)	Enterococci	Enterococci (log b/100 mL)	Enterococci	Enterococci (log b/100 mL)	Enterococci (I	Enterococci (log UFC/100 mL)
Ī				R1	R2	R1	R2	R1	R2	R1	R2
-	A1	Effluent de station d'épuration, Solesmes	2	3.01	2.94	3.83		2.67	3.00	2.68	2.59
2	A2	Effluent de station d'épuration, Saulzoir	2	2.61	2.70				2.62	2.52	2.16
က	A3	Eau usée brute, Solesmes	334	5.10	5.05	3.96	3.88	4.48	4.49		
4	A4	Effluent de station, Bierne	16		1.76						
2	A5	Eau usée brute, Cysoing	175	5.50	5.54	5.93	5.92	4.86	4.80		
9	A6	Effluent de station, Oxelaere	2	2.27	2.52					2.13	2.40
7	A7	Eau usée brute, Merville	292	5.46	5.56	4.09	4.46	5.09	5.02		
œ	A8	Eau usée brute, Bierne	51	4.55	4.73	3.99	3.98	3.66	3.64		
6	49	Eau usée brute, Boeschepe	366	80.9	5.90	4.75	4.62	5.82	4.91		
10	A10	Effluent de station, Neuf Berquin	4	3.71	3.67			3.38	2.96	3.46	3.35
1	A11	Effluent de station, Saulzoir	7	3.46	3.30			3.41	2.67	3.04	3.40
12	A12	Effluent de station, Boeschepe	7	4.27	4.19	5.02	5.16	3.98	4.08	3.91	3.93
13	B1	Effluent de station, Sommaing	2	3.44	3.11			3.06	2.89	2.65	
14	B2	Eau usée brute, Saulzoir	311	6.46	6.20	6.03	6.12	5.40	5.31		
15	B3	Eau usée brute, Sommaing	287	6.43	6.34	6.61	6.53	5.24	5.63		
16	B4	Eau usée brute, Villers Sire Nicolle	264	5.07	5.05	4.85	4.26	5.03	5.01		
17	B5	Eau usée brute, Cousolre	84	4.55	4.39	4.35	4.40	4.72	4.94	4.43	4.97
18	B6	Effluent de station, Solesmes	2	1.76	2.27					1.88	1.88
19	B7	Eau usée brute, Bois Grenier	222	5.99	5.67	6.14	90.9	5.36	5.05		
20	B8	Effluent de station, Beauvois en Cambresis	27	3.16	2.75		3.85	3.11	3.10	4.26	3.71
21	B9	Effluent - Conserverie, St Pol ZI	348	5.41	5.51	4.18	4.90				
22	B10	Effluent - Eau épurée St Pol ZI	80	2.08						1.91	1.97
23	5	Effluent de station, Bierne	-				3.56		2.51	2.41	1.57
24	C	Effluent de station, Avesne sur Helpes	2	3.14	3.31	4.18		3.36		3.30	3.28
25	ఔ	Effluent de station, Doullens	က	4.11	3.99	3.65	4.66	3.46	3.20	3.34	3.73
56	2	Effluent de station, Bavay	2	2.73	2.76	3.95	4.20	2.79	2.66	3.04	2:30
27	SS	Effluent de station, La Longueville	7	3.17	2.86	3.96	3.95	3.20	3.08	2.95	3.04
28	90	Effluent, Béthune	_			3.41		2.57			
53	C2	Effluent de station, Bierne	4	2.27	1.76			2.51	2.63	1.95	2.48
99	రొ	Effluent de station, Le Cateau Cambresis	2	3.61	3.61	4.45	4.34	3.65	3.67	2.80	3.86
31	60	Effluent de station, Rieux en Cambresis	က	3.79	3.55	4.20	4.23	3.78	3.72	3.00	3.97
32	C10	Effluent de station, Beaudignies	6	3.43	3.35	3.74	3.82	3.67	3.65	3.26	3.88
33	C11	Eau usée brute, Lecelles	312	2.60	5.99	5.75	4.83	4.53			
34	C12	Eau usée brute, Bierne	28	4.35	5.73	4.79	4.77	4.08	3.83		
35	C13	Eau usée brute, Cartignies	19	2.39	2.41		2.65	2.57	2.64		
36	C14	Eau usée brute, Etroeungt	172	5.30	5.51	5.76	5.86	4.30	4.45		
37	C15	Eau usée brute, Socx	88	3.77	4.07						
38	D1	Effluent de station, Beauvois en Cambresis	18	3.43	3.27						_
33	D2	Effluent de station, Bierne	9	1.76	2.39						
40	D3	Effluent de station, Beauvois en Cambresis	14	2.94	3.20					0.92	
41	D4	Effluent de station, Bantouzelle	80	2.39	2.70					2.72	2.71
42	D2	Effluent de station, Bierne	9	2.26	2.08					2.63	2.86
43	9Q	Effluent de station, Steene	6	4.30	4.41					3.89	2.88
44	D7	Effluent de station, Landrecies	8	4.71	4.77					4.60	4.53

Rapport de synthèse - v1 <u>XplOrer64™ CheckN'Safe™ Enterococi</u>

Prise d'essai : 1 mL 21 eaux usées

Prise d'essai : 10 mL 26 eaux usées

Ech			Méthode de	référence			Méthode a	alternative	
	Rang	Rep.1	Rep.2	Mxi	sxi interne	Rep.1	Rep.2	Myi	syi interne
A1 A3	1 2	3.01 5.10	2.94 5.05	2.97455 5.07716	0.04392 0.03709	2.67 4.48	3.00 4.49	2.83564 4.48436	0.22998 0.00604
A5 A7	3 4	5.50 5.46	5.54 5.56	5.52077 5.50652	0.02741	4.86 5.09	4.80 5.02	4.82962 5.05578	0.04362 0.04362
A8 A9	5 6	4.55 6.08	4.73 5.90	4.63676 5.99226	0.12529 0.12851	3.66 5.82	3.64 4.91	3.64673 5.36161	0.01420
A10	7	3.71	3.67	3.68923	0.03384	3.38	2.96	3.16719	0.29843
A11 A12	8 9	3.46 4.27	3.30 4.19	3.37906 4.22979	0.10912 0.05040	3.41 3.98	2.67 4.08	3.03878 4.02882	0.52250 0.07511
B1 B2	10 11	3.44 6.46	3.11 6.20	3.27398 6.33066	0.23874 0.18680	3.06 5.40	2.89 5.31	2.97538 5.35133	0.12173 0.06179
B3	12	6.43	6.34	6.38842	0.06331	5.24	5.63	5.43614	0.27622
B4 B5	13 14	5.07 4.55	5.05 4.39	5.05651 4.47111	0.01578 0.11343	5.03 4.72	5.01 4.94	5.01980 4.82962	0.01454 0.15265
B7 B8	15 16	5.99 3.16	5.67 2.75	5.82644 2.95187	0.22709 0.29245	5.36 3.11	5.05 3.10	5.20741 3.10425	0.22171 0.01087
C3	17	4.11	3.99	4.04931	0.08990	3.46	3.20	3.33326	0.18263
C4 C5	18 19	2.73 3.17	2.76 2.86	2.74520 3.01532	0.02153 0.21496	2.79 3.20	2.66 3.08	2.72757 3.14165	0.09166 0.08835
C7 C8	20 21	2.27 3.61	1.76 3.61	2.01530 3.60885	0.35620	2.51 3.65	2.63 3.67	2.56931 3.66266	0.09073
C9	22	3.79	3.55	3.66976	0.16766	3.78	3.72	3.75121	0.03810
C10 C12	23 24	3.43 4.35	3.35 5.73	3.38883 5.03798	0.05924 0.97188	3.67 4.08	3.65 3.83	3.66266 3.95263	0.01335 0.17897
C13	25 26	2.39 5.30	2.41 5.51	2.39962 5.40679	0.00979 0.14735	2.57 4.30	2.64 4.45	2.60583 4.37409	0.05321 0.10333
C14	20	5.30				4.30		•	
			Médiane x Moyenne x	4.13955 4.25546	0.09951		Médiane y Moyenne y	3.70693 3.92897	0.08954
	ácart timo do r	ánátahilitá alahal		•	0.23879	1	Sry		0.20675
	écart-type de rép	épétabilité global pétabilité robuste	Rob Swx		0.14753		Rob Swy		0.13275
			R		0.86581	1			
			Rob.R		0.89983				
	n = q = nq =	26							
	0,5 < R < 2 R > 2 R < 0,5	GMFR OLS OLS chgt	Calcul sur les	moyennes des	deux méthodes				
	Régression GMFR Ecart-types globaux	OLO trigi	Vxi	Vyi	ī ſ				
	<u>Louit types goodu</u>		3.28339 1.35173 3.20275 3.13525	2.44365 0.61695 1.62422 2.54128		8 —	Exactitude	e STEP 10	mL
			0.30648 6.04947	0.15953 4.51874		6 -			
			0.64239	1.24968		, ruat		*	**
			1.54809 0.00386	1.85790 0.02558		4 -			
			1.98361 8.64777	1.83351 4.05001		log(Alternative)	• • • •		
			9.10304	4.61940		-	/		
			1.28361 0.10587	2.38001 1.64562		0 +	2	4	6 8
			4.98748 3.48424	3.31795 1.36046				g(Référence	
			0.09308 4.56226	0.74311 2.89512	'				
			3.12211	1.24756					
			10.16354 0.83622	3.70561 0.14203					
			0.71421 1.50562	0.06465 0.14203					
			2.16921 6.88841	0.03315 3.50426					
			2.67282	0.40694					
			Vx 1.60483	Vy 0.92410	Vxy 1.10395				
			5x	Sy		J.			
			1.26682	Sy 0.96130		J			
	Estimation des name	nètres	1.26682	Sy 0.96130	ī	J			
	Estimation des param	nètres	1.26682 sur les moyen r =	Sy 0.96130 nes 0.94397		1			
	Estimation des paran	nètres	1.26682 sur les moyen	Sy 0.96130		1			
	Estimation des param Ecart-type résiduel pa		1.26682 sur les moyen r = b = a =	Sy 0.96130 nes 0.94397 0.75883 0.69981		yi estimés 2.95698	résidus -0.12134	Smy:x 0.32823	-
		ar rapport aux po	sur les moyen r = b = a =	Sy 0.96130 nes 0.94397 0.75883 0.69981		2.95698 4.55250	-0.12134 -0.06813	Smy:x 0.32823]
	Ecart-type résiduel pa	ar rapport aux po	sur les moyen r = b = a =	Sy 0.96130 nes 0.94397 0.75883 0.69981		2.95698 4.55250 4.88912 4.87831	-0.12134 -0.06813 -0.05951 0.17746]
	Ecart-type résiduel pa	ar rapport aux po	sur les moyen r = b = a =	Sy 0.96130 nes 0.94397 0.75883 0.69981		2.95698 4.55250 4.88912 4.87831 4.21831	-0.12134 -0.06813 -0.05951 0.17746 -0.57159]
	Ecart-type résiduel pa	ar rapport aux po	sur les moyen r = b = a =	Sy 0.96130 nes 0.94397 0.75883 0.69981		2.95698 4.55250 4.88912 4.87831 4.21831 5.24691 3.49930	-0.12134 -0.06813 -0.05951 0.17746 -0.57159 0.11470 -0.33211]
	Ecart-type résiduel pa	ar rapport aux po	sur les moyen r = b = a =	Sy 0.96130 nes 0.94397 0.75883 0.69981		2.95698 4.55250 4.88912 4.87831 4.21831 5.24691 3.49930 3.26393	-0.12134 -0.06813 -0.05951 0.17746 -0.57159 0.11470 -0.33211 -0.22515]
	Ecart-type résiduel pa	ar rapport aux po	sur les moyen r = b = a =	Sy 0.96130 nes 0.94397 0.75883 0.69981		2.95698 4.55250 4.88912 4.87831 4.21831 5.24691 3.49930 3.26393 3.90949 3.18420	-0.12134 -0.06813 -0.05951 0.17746 -0.57159 0.11470 -0.33211 -0.22515 0.11932 -0.20882]
	Ecart-type résiduel pa	ar rapport aux po	sur les moyen r = b = a =	Sy 0.96130 nes 0.94397 0.75883 0.69981		2.95698 4.55250 4.88912 4.87831 4.21831 5.24691 3.49930 3.26393 3.90949 3.18420 5.50369 5.54752	-0.12134 -0.06813 -0.05951 0.17746 -0.57159 0.11470 -0.33211 -0.22515 0.11932 -0.20882 -0.15236 -0.11139]
	Ecart-type résiduel pa	ar rapport aux po	sur les moyen r = b = a =	Sy 0.96130 nes 0.94397 0.75883 0.69981		2.95698 4.55250 4.88912 4.87831 4.21831 5.24691 3.49930 3.26393 3.90949 3.18420 5.50369 5.54752 4.53683	-0.12134 -0.06813 -0.05951 0.17746 -0.57159 0.11470 -0.33211 -0.22515 0.11932 -0.20882 -0.15236 -0.11139 0.48297]
	Ecart-type résiduel pa	ar rapport aux po	sur les moyen r = b = a =	Sy 0.96130 nes 0.94397 0.75883 0.69981		2.95698 4.55250 4.88912 4.87831 4.21831 5.24691 3.49930 3.26393 3.90949 3.18420 5.50369 5.54752 4.53683 4.09261 5.512107	-0.12134 -0.06813 -0.05951 0.17746 -0.57159 0.11470 -0.33211 -0.22515 0.11932 -0.20882 -0.15236 -0.11139 0.48297 0.73701 0.08634		
	Ecart-type résiduel pa	ar rapport aux po	sur les moyen r = b = a =	Sy 0.96130 nes 0.94397 0.75883 0.69981		2.95698 4.55250 4.88912 4.87831 4.21831 5.24691 3.49930 3.26393 3.90949 3.18420 5.50369 5.54752 4.53683 4.09261	-0.12134 -0.06813 -0.05951 0.17746 -0.57159 0.11470 -0.33211 -0.22515 0.11932 -0.20882 -0.15236 -0.11139 0.48297]
	Ecart-type résiduel pa	ar rapport aux po	sur les moyen r = b = a =	Sy 0.96130 nes 0.94397 0.75883 0.69981		2.95698 4.55250 4.88912 4.87831 5.24691 3.49930 3.90949 3.18420 5.50369 5.54752 4.53683 4.09261 5.12107 2.93977 3.77254 2.78294	-0.12134 -0.08813 -0.09951 0.17746 -0.57159 0.11470 -0.33211 -0.22515 0.11932 -0.20882 -0.15236 -0.11139 0.48297 0.73701 0.08634 0.16448 -0.43928 -0.43928]
	Ecart-type résiduel pa	ar rapport aux po	sur les moyen r = b = a =	Sy 0.96130 nes 0.94397 0.75883 0.69981		2.95698 4.55250 4.88912 4.87831 5.24891 3.49930 3.26393 3.90949 5.50369 5.54762 4.53683 4.09261 5.12107 2.93977 2.77254 2.78294 2.98792 2.22907	-0.12134 -0.06813 -0.05951 0.17746 -0.57159 0.11470 -0.33211 -0.22515 0.11932 -0.15236 -0.11139 0.48297 0.73701 0.08634 0.16448 -0.43928 -0.45537 0.15373 0.15373]
	Ecart-type résiduel pa	ar rapport aux po	sur les moyen r = b = a =	Sy 0.96130 nes 0.94397 0.75883 0.69981		2.95698 4.55250 4.88912 4.87831 5.24691 3.49930 3.26393 3.90949 3.18420 5.50369 5.54752 4.53683 4.09261 5.12107 2.93977 3.77254 2.78294 2.98792 2.22907 3.43830	-0.12134 -0.08813 -0.05951 0.17746 -0.577159 0.11470 -0.33211 -0.22515 -0.15236 -0.11139 0.48297 0.73701 0.08834 -0.43928 -0.05537 0.155373 0.34024]
	Ecart-type résiduel pa	ar rapport aux po	sur les moyen r = b = a =	Sy 0.96130 nes 0.94397 0.75883 0.69981		2.95688 4.55268 4.58912 4.88912 4.87831 5.24691 3.26933 3.26333 3.90949 5.54762 4.55883 4.09261 5.12107 2.29279 2.2927	-0.12134 -0.08913 -0.08915 -0.08951 -0.17746 -0.57159 -0.14770 -0.33211 -0.22515 -0.11932 -0.20882 -0.11932 -0.11139 -0.48297 -0.73701 -0.86534 -0.43928 -0.45373 -0.05537 -0.36537 -0.2435 -0.26669 -0.22435 -0.26669 -0.22435 -0.26669]
	Ecart-type résiduel pa	ar rapport aux po	sur les moyen r = b = a =	Sy 0.96130 nes 0.94397 0.75883 0.69981		2.95698 4.55250 4.89912 4.87831 4.21831 5.24691 5.24691 3.15930 3.15930 3.15930 5.54752 4.53683 4.09261 5.54752 2.769344 2.76934 2.76934 2.76934 2.76934 2.76934 2.76934 2.76934 2.769	-0.12134 -0.08913 -0.08913 -0.05951 0.17746 -0.57159 0.11470 -0.33211 -0.22515 0.11932 -0.20882 -0.15236 -0.11139 -0.45297 0.73701 0.08653 0.16448 -0.43928 -0.05537 0.15373 0.15473 0.22435 0.26669 0.39131 -0.57014 0.08512]
	Ecart-type résiduel p	ar rapport aux po 0.464185323	1.26682 sur les moyen; r = b = a = ints estimés de	Sy 0.96130 nes 0.94397 0.75883 0.69991 la régression		2.95698 4.85912 4.87831 4.21831 5.24691 3.499049 3.198049 5.5089 5.50892 5.50892 5.50892 5.50892 4.53834 4.5384 4.5384 4.5384 4.5384 4.5384 4.	-0.12134 -0.08813 -0.09851 -0.05951 -0.17746 -0.577159 -0.11470 -0.32211 -0.22515 -0.11932 -0.12526 -0.11139 -0.48297 -0.37371 -0.68534 -0.49928 -0.49928 -0.49928 -0.49928 -0.49928 -0.49928 -0.49928 -0.49928 -0.57014 -0.57014 -0.57014 -0.57014 -0.57014 -0.57014 -0.57014 -0.57014 -0.57014 -0.57014	0.32823]
	Ecart-type résiduel pr Sy:x =	ar rapport aux po 0.464185323	sur les moyen r = b = a =	Sy 0.96130 hes 0.94397 0.75683 0.69961 la régression 0.22972 0.05182	t(a)	2.95698 4.89912 4.87831 4.21831 5.24691 3.499930 3.499930 3.18420 5.54978 2.55779 2.55779 2.299777 2.299777 2.299777 2.299777 2.299777 2.299777 2.299777 2.299777 2.29	-0.12134 -0.08813 -0.09815 -0.09815 -0.059951 -0.17746 -0.577159 -0.11470 -0.33211 -0.32251 -0.13220 -0.13220 -0.13230 -0.22682 -0.15273 -0.43223 -0.15273 -0.43223 -0.15273 -0.43225 -0.05537 -0.43225 -0.05537 -0.26825 -0.05537 -0.26825 -0.05537 -0.26825 -0.05537 -0.26825 -0.05537 -0.26825 -0.05537 -0.26825 -0.05537 -0.24825 -0.05537 -0.24825 -0.26825 -0.26825 -0.26825 -0.26825 -0.26825 -0.26825 -0.26825 -0.26825 -0.26825 -0.26825 -0.26825 -0.26825 -0.26825]
	Ecart-type résiduel p	ar rapport aux po 0.464185323	1,26682 sur les moyen f = b = a = sints estimés de	Sy 0.96130	t(a) t(b) te reference	2.95698 4.89912 4.87831 4.21831 5.24691 3.49930 3.49930 3.19420 5.54692 4.55720 5.54692 5.54692 5.54692 4.75294 2.75294 2.75294 2.75294 2.75294 2.75294 2.75294 4.80263 3.04653 3.04653 4.65507 4.65507	-0.12134 -0.08813 -0.09815 -0.09815 -0.059951 -0.17746 -0.577159 -0.11470 -0.33211 -0.32251 -0.13221 -0.32321 -0.13230 -0.22615 -0.13230 -0.43227 -0.43223 -0.15373 -0.34024 -0.15373 -0.34024 -0.15373 -0.34024 -0.15373 -0.34024 -0.15373 -0.34024 -0.22435 -0.26669	0.32823]
	Ecart-type résiduel per Syx = Syx = Ecart-types des para	ar rapport aux po 0.464185323	sur les moyen r = b = a = s = s = s = s = s = s = s = s = s	Sy 0.96130 0.96130 0.96130 0.75883 0.75883 0.69981 la régression 0.22972 0.05182 Méthode d 0.64	t(a) t(b) te référence 3861	2.95698 4.89912 4.87831 4.21831 5.24691 3.499930 3.26393 3.90949 3.18420 5.54982 4.53881 4.54881 5.54782 2.52071 2.98792 2.22907 3.43883 3.44842 2.78294 4.54883 3.44842 3.45883 4.548	-0.12134 -0.08813 -0.09815 -0.09815 -0.0746 -0.577159 -0.11470 -0.33211 -0.32215 -0.13221 -0.32211 -0.32211 -0.1322 -0.15233 -0.15233 -0.15233 -0.34024 -0.15233 -0.34024 -0.24355 -0.26669 -0.22435 -0.26669 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.242854	0.32823]
	Ecart-type résiduel per Syx = Syx = Ecart-types des para	ar rapport aux po 0.464185323	1.26682 sur les moyen	Sy 0.96130 0.96130 0.96130 0.75883 0.75883 0.69981 la régression 0.22972 0.05182 Méthode d 0.64	t(a) (tb) te référence 3879	2.95698 4.85912 4.87831 4.21831 5.24691 3.49830 3.18420 5.54931 3.18420 5.54752 4.53683 4.09261 5.512107 2.93977 2.75234 4.276234 2.76234 2.76234 2.76234 4.5267 3.43830 3.438	-0.12134 -0.08813 -0.09815 -0.09815 -0.0746 -0.577159 -0.11470 -0.33211 -0.32215 -0.13221 -0.32211 -0.32211 -0.1322 -0.15233 -0.15233 -0.15233 -0.34024 -0.15233 -0.34024 -0.24355 -0.26669 -0.22435 -0.26669 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.242854	0.32823	
	Ecart-type résiduel per Syx = Syx = Ecart-types des para	ar rapport aux po 0.464185323	sur les moyen (**) sur le	Sy 0.96130 0.96130 0.96130 0.75883 0.75883 0.69981 la régression 0.22972 0.05182 Méthode d 0.64	t(a) t(b) te référence 3861	2.95698 4.89912 4.87831 4.21831 5.24691 3.499930 3.26393 3.90949 3.18420 5.54982 4.53881 4.54881 5.54782 2.52071 2.98792 2.22907 3.43883 3.44842 2.78294 4.54883 3.44842 3.45883 4.548	-0.12134 -0.08813 -0.09815 -0.09815 -0.0746 -0.577159 -0.11470 -0.33211 -0.32215 -0.13221 -0.32211 -0.32211 -0.1322 -0.15233 -0.15233 -0.15233 -0.34024 -0.15233 -0.34024 -0.24355 -0.26669 -0.22435 -0.26669 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.242854	0.32823]
	Ecart-type résiduel per Syx = Syx = Syx = Répétabilité = 2,8 Sy	ar rapport aux po 0.464185323	1,26682 sur les moyen; r = b = a = a = s = s = s = s = s = s = s = s	Sy 0.96130 0.96130 0.96130 0.75883 0.75883 0.69981 la régression 0.22972 0.05182 Méthode d 0.64	t(a) t(b) te référence 3861	2.95698 4.89912 4.87831 4.21831 5.24691 3.499930 3.26393 3.90949 3.18420 5.54982 4.53881 4.54881 5.54782 2.52071 2.98792 2.22907 3.43883 3.44842 2.78294 4.54883 3.44842 3.45883 4.548	-0.12134 -0.08813 -0.09815 -0.09815 -0.0746 -0.577159 -0.11470 -0.33211 -0.32215 -0.13221 -0.32211 -0.32211 -0.1322 -0.15233 -0.15233 -0.15233 -0.34024 -0.15233 -0.34024 -0.24355 -0.26669 -0.22435 -0.26669 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.242854	0.32823	
	Ecart-type résiduel per Syx = Syx = Syx = Répétabilité = 2,8 Sy	ar rapport aux po 0.464185323	1,26682	Sy 0.96130 0.96130 0.96130 0.75883 0.75883 0.69981 la régression 0.22972 0.05182 Méthode d 0.64	t(a) t(b) te référence 3861	2.95698 4.89912 4.87831 4.21831 5.24691 3.49930 3.3,2633 3.90949 3.18420 5.54782 4.53881 4.54881 5.54782 2.52071 2.98792 2.22907 3.43883 3.44842 2.78294 4.54883 3.44842 3.45883 4.548	-0.12134 -0.08813 -0.09815 -0.09815 -0.0746 -0.577159 -0.11470 -0.33211 -0.32215 -0.13221 -0.32211 -0.32211 -0.1322 -0.15233 -0.15233 -0.15233 -0.34024 -0.15233 -0.34024 -0.24355 -0.26669 -0.22435 -0.26669 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.242854	0.32823]
	Ecart-type résiduel per Syx = Syx = Syx = Répétabilité = 2,8 Sy	ar rapport aux po 0.464185323	1,26682	Sy 0.96130 0.96130 0.96130 0.75883 0.75883 0.69981 la régression 0.22972 0.05182 Méthode d 0.64	t(a) t(b) te référence 3861	2.95698 4.89912 4.87831 4.21831 5.24691 3.49930 3.3,2633 3.90949 3.18420 5.54782 4.53881 4.54881 5.54782 2.52071 2.98792 2.22907 3.43883 3.44842 2.78294 4.54883 3.44842 3.45883 4.548	-0.12134 -0.08813 -0.09815 -0.09815 -0.0746 -0.577159 -0.11470 -0.33211 -0.32215 -0.13221 -0.32211 -0.32211 -0.1322 -0.15233 -0.15233 -0.15233 -0.34024 -0.15233 -0.34024 -0.24355 -0.26669 -0.22435 -0.26669 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.242854	0.32823	
	Ecart-type résiduel per Syx = Syx = Syx = Répétabilité = 2,8 Sy	ar rapport aux po 0.464185323	1,26682 sur les moyen	Sy 0.96130 0.96130 0.96130 0.75883 0.75883 0.69981 la régression 0.22972 0.05182 Méthode d 0.64	t(a) t(b) te référence 3861	2.95698 4.89912 4.87831 4.21831 5.24691 3.49930 3.3,2633 3.90949 3.18420 5.54782 4.53881 4.54881 5.54782 2.52071 2.98792 2.22907 3.43883 3.44842 2.78294 4.54883 3.44842 3.45883 4.548	-0.12134 -0.08813 -0.09815 -0.09815 -0.0746 -0.577159 -0.11470 -0.33211 -0.32215 -0.13221 -0.32211 -0.32211 -0.1322 -0.15233 -0.15233 -0.15233 -0.34024 -0.15233 -0.34024 -0.24355 -0.26669 -0.22435 -0.26669 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.242854	0.32823]
	Ecart-type résiduel per Syx = Syx = Syx = Répétabilité = 2,8 Sy	ar rapport aux po 0.464185323	1,26682	Sy 0.96130 0.96130 0.96130 0.75883 0.75883 0.69981 la régression 0.22972 0.05182 Méthode d 0.64	t(a) t(b) te référence 3861	2.95698 4.89912 4.87831 4.21831 5.24691 3.49930 3.3,2633 3.90949 3.18420 5.54782 4.53881 4.54881 5.54782 2.52071 2.98792 2.22907 3.43883 3.44842 2.78294 4.54883 3.44842 3.45883 4.548	-0.12134 -0.08813 -0.09815 -0.09815 -0.0746 -0.577159 -0.11470 -0.33211 -0.32215 -0.13221 -0.32211 -0.32211 -0.1322 -0.15233 -0.15233 -0.15233 -0.34024 -0.15233 -0.34024 -0.24355 -0.26669 -0.22435 -0.26669 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.242854	0.32823	
	Ecart-type résiduel per Syx = Syx = Syx = Répétabilité = 2,8 Sy	ar rapport aux po 0.464185323	1,26682 sur les moyen r = b = a = a = s = s = s = s = s = s = s = s	Sy 0.96130 0.96130 0.96130 0.75883 0.75883 0.69981 la régression 0.22972 0.05182 Méthode d 0.64	t(a) t(b) te référence 3861	2.95698 4.89912 4.87831 4.21831 5.24691 3.49930 3.3,2633 3.90949 3.18420 5.54782 4.53881 4.54881 5.54782 2.52071 2.98792 2.22907 3.43883 3.44842 2.78294 4.54883 3.44842 3.45883 4.548	-0.12134 -0.08813 -0.09815 -0.09815 -0.0746 -0.577159 -0.11470 -0.33211 -0.32215 -0.13221 -0.32211 -0.32211 -0.1322 -0.15233 -0.15233 -0.15233 -0.34024 -0.15233 -0.34024 -0.24355 -0.26669 -0.22435 -0.26669 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.242854	0.32823	
	Ecart-type résiduel per Syx = Syx = Syx = Répétabilité = 2,8 Sy	ar rapport aux po 0.464185323	1,26682 sur les moyen r= b= a= ints estimés de S(a) S(b) S(b) Sr (Rob.Sr Rob.Sr Rob.Sr Rob.1 0,13891 0,059279 0,08115 0,045075 0,99003 0,04028 0,029860 0,097933	Sy 0.96130 0.96130 0.96130 0.75883 0.75883 0.69981 la régression 0.22972 0.05182 Méthode d 0.64	t(a) t(b) te référence 3861	2.95698 4.89912 4.87831 4.21831 5.24691 3.49930 3.3,2633 3.90949 3.18420 5.54782 4.53881 4.54881 5.54782 2.52071 2.98792 2.22907 3.43883 3.44842 2.78294 4.54883 3.44842 3.45883 4.548	-0.12134 -0.08813 -0.09815 -0.09815 -0.0746 -0.577159 -0.11470 -0.33211 -0.32215 -0.13221 -0.32211 -0.32211 -0.1322 -0.15233 -0.15233 -0.15233 -0.34024 -0.15233 -0.34024 -0.24355 -0.26669 -0.22435 -0.26669 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.242854	0.32823]
	Ecart-type résiduel per Syx = Syx = Syx = Répétabilité = 2,8 Sy	ar rapport aux po 0.464185323	1,26682 sur les moyen r = b = a = ints estimés de S(a) S(b) S(b) S(b) Différences -0.13891 -0.59279 -0.69115 -0.45075 -0.99003 -0.5228 -0.20393 -0.95228 -0.097933 -0.95228 -0.03871	Sy 0.96130 0.96130 0.96130 0.75883 0.75883 0.69981 la régression 0.22972 0.05182 Méthode d 0.64	t(a) t(b) te référence 3861	2.95698 4.89912 4.87831 4.21831 5.24691 3.49930 3.3,2633 3.90949 3.18420 5.54782 4.53881 4.54881 5.54782 2.52071 2.98792 2.22907 3.43883 3.44842 2.78294 4.54883 3.44842 3.45883 4.548	-0.12134 -0.08813 -0.09815 -0.09815 -0.0746 -0.577159 -0.11470 -0.33211 -0.32215 -0.13221 -0.32211 -0.32211 -0.1322 -0.15233 -0.15233 -0.15233 -0.34024 -0.15233 -0.34024 -0.24355 -0.26669 -0.22435 -0.26669 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.242854	0.32823	
	Ecart-type résiduel per Syx = Syx = Syx = Répétabilité = 2,8 Sy	ar rapport aux po 0.464185323	1,26682	Sy 0.96130 0.96130 0.96130 0.75883 0.75883 0.69981 la régression 0.22972 0.05182 Méthode d 0.64	t(a) t(b) te référence 3861	2.95698 4.89912 4.87831 4.21831 5.24691 3.49930 3.3,2633 3.90949 3.18420 5.54782 4.53881 4.54881 5.54782 2.52071 2.98792 2.22907 3.43883 3.44842 2.78294 4.54883 3.44842 3.45883 4.548	-0.12134 -0.08813 -0.09815 -0.09815 -0.0746 -0.577159 -0.11470 -0.33211 -0.32215 -0.13221 -0.32211 -0.32211 -0.1322 -0.15233 -0.15233 -0.15233 -0.34024 -0.15233 -0.34024 -0.24355 -0.26669 -0.22435 -0.26669 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.242854	0.32823	
	Ecart-type résiduel per Syx = Syx = Syx = Répétabilité = 2,8 Sy	ar rapport aux po 0.464185323	1,26682 sur les moyen r = b = a = ints estimés de S(a) S(b) S(b) Sr r, Rob.sr Rob.sr Rob.sr Rob.sr -0.15829 -0.9903 -0.3625 -0.3066 -0.2008 -0.2008 -0.2008 -0.2008 -0.2008 -0.2008 -0.2008 -0.2008 -0.2008 -0.2008 -0.3066 -0.3066 -0.3066 -0.3066 -0.3067 -0.3066	Sy 0.96130 0.96130 0.96130 0.75883 0.75883 0.69981 la régression 0.22972 0.05182 Méthode d 0.64	t(a) t(b) te référence 3861	2.95698 4.89912 4.87831 4.21831 5.24691 3.49930 3.3,2633 3.90949 3.18420 5.54782 4.53881 4.54881 5.54782 2.52071 2.98792 2.22907 3.43883 3.44842 2.78294 4.54883 3.44842 3.45883 4.548	-0.12134 -0.08813 -0.09815 -0.09815 -0.0746 -0.577159 -0.11470 -0.33211 -0.32215 -0.13221 -0.32211 -0.32211 -0.1322 -0.15233 -0.15233 -0.15233 -0.34024 -0.15233 -0.34024 -0.24355 -0.26669 -0.22435 -0.26669 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.242854	0.32823	
	Ecart-type résiduel per Syx = Syx = Syx = Répétabilité = 2,8 Sy	ar rapport aux po 0.464185323	1,26682	Sy 0.96130 0.96130 0.96130 0.75883 0.75883 0.69981 la régression 0.22972 0.05182 Méthode d 0.64	t(a) t(b) te référence 3861	2.95698 4.89912 4.87831 4.21831 5.24691 3.49930 3.3,2633 3.90949 3.18420 5.54782 4.53881 4.54881 5.54782 2.52071 2.98792 2.22907 3.43883 3.44842 2.78294 4.54883 3.44842 3.45883 4.548	-0.12134 -0.08813 -0.09815 -0.09815 -0.0746 -0.577159 -0.11470 -0.33211 -0.32215 -0.13221 -0.32211 -0.32211 -0.1322 -0.15233 -0.15233 -0.15233 -0.34024 -0.15233 -0.34024 -0.24355 -0.26669 -0.22435 -0.26669 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.242854	0.32823	
	Ecart-type résiduel per Syx = Syx = Syx = Répétabilité = 2,8 Sy	ar rapport aux po 0.464185323	1,26682 sur les moyen	Sy 0.96130 0.96130 0.96130 0.75883 0.75883 0.69981 la régression 0.22972 0.05182 Méthode d 0.64	t(a) t(b) te référence 3861	2.95698 4.55250 4.89912 4.87831 4.21831 5.24691 3.49930 3.3.90949 3.18420 5.50393 3.90949 3.18420 5.50393 3.90949 3.18420 5.50393 3.90493 3.18420 2.75204 4.53681 4.53	-0.12134 -0.08813 -0.09815 -0.09815 -0.0746 -0.577159 -0.11470 -0.33211 -0.32215 -0.13221 -0.32211 -0.32211 -0.1322 -0.15233 -0.15233 -0.15233 -0.34024 -0.15233 -0.34024 -0.24355 -0.26669 -0.22435 -0.26669 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.22435 -0.26821 -0.242854	0.32823	
	Ecart-type résiduel per Syx = Syx = Syx = Répétabilité = 2,8 Sy	ar rapport aux po 0.464185323	1,26682	Sy 0.96130 0.96130 0.96130 0.75883 0.75883 0.69981 la régression 0.22972 0.05182 Méthode d 0.64	t(a) t(b) te référence 3861	2.95698 4.55250 4.89912 4.87831 4.21831 5.24691 3.49930 3.3.90949 3.18420 5.50393 3.90949 3.18420 5.50393 3.90949 3.18420 5.50393 3.90493 3.18420 2.75204 4.53681 4.53	-0.12134 -0.08813 -0.09815 -0.09815 -0.0746 -0.577159 -0.11470 -0.33211 -0.32215 -0.13221 -0.32211 -0.32211 -0.1322 -0.15233 -0.15233 -0.15233 -0.34024 -0.15233 -0.34024 -0.24355 -0.26669 -0.22435 -0.26669 -0.22435 -0.26851 -0.26851 -0.26851 -0.26851 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.68512 -0.43928 -0.68512 -0.43928 -0.68690 -0.24356	0.32823	
	Ecart-type résiduel per Syx = Syx = Syx = Répétabilité = 2,8 Sy	ar rapport aux po 0.464185323	1,26682 sur les moyen r = b = a = ints estimés de S(a) S(b) S(b) Sr Rob.sr Rob.sr Rob.sr Rob.sr -0.13891 -0.55279 -0.69115 -0.45075 -0.99033 -0.95228 -0.2039 -0.20	Sy 0.96130 0.96130 0.96130 0.75883 0.75883 0.69981 la régression 0.22972 0.05182 Méthode d 0.64	t(a) t(b) te référence 3861	2.95698 4.55250 4.89912 4.87831 4.21831 5.24691 3.49930 3.3.90949 3.18420 5.50393 3.90949 3.18420 5.50393 3.90949 3.18420 5.50393 3.90493 3.18420 2.75204 4.53681 4.53	-0.12134 -0.08813 -0.09815 -0.09815 -0.0746 -0.577159 -0.11470 -0.33211 -0.32215 -0.13221 -0.32211 -0.32211 -0.1322 -0.15233 -0.15233 -0.15233 -0.34024 -0.15233 -0.34024 -0.24355 -0.26669 -0.22435 -0.26669 -0.22435 -0.26851 -0.26851 -0.26851 -0.26851 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.68512 -0.43928 -0.68512 -0.43928 -0.68690 -0.24356	0.32823	
	Ecart-type résiduel per Syx = Syx = Syx = Répétabilité = 2,8 Sy	ar rapport aux po 0.464185323	1,26682 sur les moyen r = b = a = ints estimés de S(e) S(b) S(b) S(b) Sr r Rob.Sr Rob.Sr Rob.Sr Rob.1 0,13891 0,5228 0,13891 0,5223 0,045075 0,99033 0,95228 0,03671 0,36861 0,071605 0,071762 0,0717	Sy 0.96130 0.96130 0.96130 0.75883 0.75883 0.69981 la régression 0.22972 0.05182 Méthode d 0.64	t(a) t(b) te référence 3861	2.95698 4.55250 4.89912 4.87831 4.21831 5.24691 3.49930 3.3.90949 3.18420 5.50393 3.90949 3.18420 5.50393 3.90949 3.18420 5.50393 3.90493 3.18420 2.75204 4.53681 4.53	-0.12134 -0.08813 -0.09815 -0.09815 -0.0746 -0.577159 -0.11470 -0.33211 -0.32215 -0.13221 -0.32211 -0.32211 -0.1322 -0.15233 -0.15233 -0.15233 -0.34024 -0.15233 -0.34024 -0.24355 -0.26669 -0.22435 -0.26669 -0.22435 -0.26851 -0.26851 -0.26851 -0.26851 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.68512 -0.43928 -0.68512 -0.43928 -0.68690 -0.24356	0.32823	
	Ecart-type résiduel per Syx = Syx = Syx = Répétabilité = 2,8 Sy	ar rapport aux po 0.464185323	1,26682 sur les moyen	Sy 0.96130 0.96130 0.96130 0.75883 0.75883 0.69981 la régression 0.22972 0.05182 Méthode d 0.64	t(a) t(b) te référence 3861	2.95698 4.55250 4.89912 4.87831 4.21831 5.24691 3.49930 3.3.90949 3.18420 5.50393 3.90949 3.18420 5.50393 3.90949 3.18420 5.50393 3.90493 3.18420 2.75204 4.53681 4.53	-0.12134 -0.08813 -0.09815 -0.09815 -0.0746 -0.577159 -0.11470 -0.33211 -0.32215 -0.13221 -0.32211 -0.32211 -0.1322 -0.15233 -0.15233 -0.15233 -0.34024 -0.15233 -0.34024 -0.24355 -0.26669 -0.22435 -0.26669 -0.22435 -0.26851 -0.26851 -0.26851 -0.26851 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.08512 -0.43928 -0.68512 -0.43928 -0.68512 -0.43928 -0.68690 -0.24356	0.32823	

Rapport de synthèse - v1 <u>XplOrer64™ ChekN'Safe™ Enterococci</u>

Prise d'essai : 100 mL 21 eaux usées

	Ī		Méthode de						
7	Rang 1	Rep.1 3.01	Rep.2 2.94	Mxi 2.97455	sxi interne 0.04392	Rep.1 2.68	Méthode a Rep.2 2.59	Myi 2.63388	syi interne 0.06055
	2	2.61	2.70	2.65693	0.05945	2.52	2.16	2.33910	0.25559
+	3	2.27 3.71	2.52 3.67	2.39284 3.68923	0.17773 0.03384	2.13 3.46	2.40 3.35	2.26747 3.40836	0.07727
4	5 6	3.46 4.27	3.30 4.19	3.37906 4.22979	0.10912 0.05040	3.04 3.91	3.40 3.93	3.21982 3.91699	0.26020 0.01454
1	7	4.55	4.39	4.47111	0.11343	4.43	4.97	4.69570 1.87506	0.38164
+	8 9	1.76 3.16	2.27 2.75	2.01530 2.95187	0.35620 0.29245	1.88 4.26	1.88 3.71	1.87506 3.98381	0.00000 0.38527
-	10 11	3.14 4.11	3.31 3.99	3.22319 4.04931	0.11649 0.08990	3.30 3.34	3.28 3.73	3.28989 3.53741	0.01575 0.27575
	12	2.73	2.76	2.74520	0.02153	3.04	2.30	2.67121	0.52352
4	13 14	3.17 2.27	2.86 1.76	3.01532 2.01530	0.21496 0.35620	2.95 1.95	3.04 2.48	2.99539 2.21568	0.06506 0.36973
1	15	3.61	3.61	3.60885	0.00000	2.80	3.86	3.32834	0.74811
+	16 17	3.79	3.55 3.35	3.66976 3.38883	0.16766 0.05924	3.00 3.26	3.97 3.88	3.48656 3.56517	0.68811
1	18 19	2.39	2.70	2.54583 2.16541	0.21657	2.72	2.71	2.71179	0.00596
+	19 20	2.26 4.30	2.08 4.41	2.16541 4.35402	0.12709 0.07755	2.63 3.89	2.86	2.74840 3.38358	0.16253 0.71915
_	21	4.71	4.77	4.74363	0.04303	4.60	4.53	4.56677	0.04991
			Médiane x Moyenne x		0.10912		Médiane y Moyenne y	3.28989 3.18287	0.25559
E	écart-type de ré écart-type de rép	épétabilité global pétabilité robuste	Srx Rob Swx		0.16557 0.16178		Sry Rob Swy		0.36092 0.37894
			Rob.R		2.17990 2.34237				
	n = q = nq = 0,5 < R < 2 R > 2	21 42 GMFR OLS	Calcul sur les	données individ	duelles alternativ	re et les moyenr	nes référence		
L	R < 0,5	OLS chgt							
	Régression OLS Ecart-types globaux		y = a + bx Vxi 0.07690	Vyi	"SPE"				1. 0
			0.07680 0.35373	0.60646 1.48926	0.30429 1.00367		8 —	⊨xactit	ude STEP 100
			0.73761 0.19145	1.71181 0.10766	1.57237 0.19732		1		
			0.01622 0.95670	0.07043 1.07806	0.00941 1.43609		log(Alternative)		
			1.48700	4.72294	3.68956		erna		24 É
			1.52864	3.42075 1.43143	3.23391 -0.48026		₹ 4 -		22.00
			0.00081	0.02315	-0.00610			3.0	
			0.63621 0.25653	0.32743 0.79767	0.56557 0.51830		2 -	240	
			0.05587	0.07453	0.08863			/	
			1.52864 0.12757	2.00762 0.60199	2.39164 0.10391		0 :-	2	4 6
			0.17479 0.01881	0.65794 0.48436	0.25393 0.10486			-	log(Référence)
			0.49822	0.44388	0.66503				
			1.17999	0.40396	0.94393				
				0.59774					
			1.21514 2.22592	0.59774 3.83282	0.44248 4.12941				
			1.21514	0.59774 3.83282 Vy	0.44248				
			1.21514 2.22592 Vx	0.59774 3.83282	0.44248 4.12941 Vxy				
Ē	Estimation des param	nètres	1.21514 2.22592 Vx 0.65154 Sx 0.80718	0.59774 3.83282 Vy 0.60712 Sy 0.77918 es individuelles 0.82090 0.79242	0.44248 4.12941 Vxy				
	Estimation des param Ecart-type résiduel ps		1.21514 2.22592 Vx 0.65154 Sx 0.80718 sur les donnée r = b = a =	0.59774 3.83282 Vy 0.60712 Sy 0.77918 ss individuelles 0.82090 0.79242 0.60617	0.44248 4.12941 Vxy	Yk es 2.96788			yk - Yk estimés
		ar rapport aux po	1.21514 2.22592 Vx 0.65154 Sx 0.80718 sur les donnée r = b = a =	0.59774 3.83282 Vy 0.60712 Sy 0.77918 ss individuelles 0.82090 0.79242 0.60617	0.44248 4.12941 Vxy	2.98788 2.67827	2.93866 2.74489	-0.31119 -0.15844	-0.34760 -0.58653
	Ecart-type résiduel pa	ar rapport aux po	1.21514 2.22592 Vx 0.65154 Sx 0.80718 sur les donnée r = b = a =	0.59774 3.83282 Vy 0.60712 Sy 0.77918 ss individuelles 0.82090 0.79242 0.60617	0.44248 4.12941 Vxy	2.98788	2.93866	-0.31119	-0.34760
	Ecart-type résiduel pa	ar rapport aux po	1.21514 2.22592 Vx 0.65154 Sx 0.80718 sur les donnée r = b = a =	0.59774 3.83282 Vy 0.60712 Sy 0.77918 ss individuelles 0.82090 0.79242 0.60617	0.44248 4.12941 Vxy	2.98788 2.67827 2.40273 3.54855 3.34495	2.93866 2.74489 2.60190 3.51063 3.22267	-0.31119 -0.15844 -0.26919 -0.08556 -0.30912	-0.34760 -0.58653 -0.20050 -0.15691 0.18114
	Ecart-type résiduel pa	ar rapport aux po	1.21514 2.22592 Vx 0.65154 Sx 0.80718 sur les donnée r = b = a =	0.59774 3.83282 Vy 0.60712 Sy 0.77918 ss individuelles 0.82090 0.79242 0.60617	0.44248 4.12941 Vxy	2.98788 2.67827 2.40273 3.54855 3.34495 3.98619 4.21273	2.93866 2.74489 2.60190 3.51063 3.22267 3.92971 4.08561	-0.31119 -0.15844 -0.26919 -0.08556 -0.30912 -0.07948 0.21311	-0.34760 -0.58653 -0.20050 -0.15691 0.18114 -0.00244 0.87994
	Ecart-type résiduel pa	ar rapport aux po	1.21514 2.22592 Vx 0.65154 Sx 0.80718 sur les donnée r = b = a =	0.59774 3.83282 Vy 0.60712 Sy 0.77918 ss individuelles 0.82090 0.79242 0.60617	0.44248 4.12941 Vxy	2.98788 2.67827 2.40273 3.54855 3.34495 3.98619 4.21273 2.00355	2.93866 2.74489 2.60190 3.51063 3.22267 3.92971 4.08561 2.40273	-0.31119 -0.15844 -0.26919 -0.08556 -0.30912 -0.07948 0.21311 -0.12849	-0.34760 -0.58653 -0.20050 -0.15691 0.18114 -0.00244 0.87994 -0.52767
	Ecart-type résiduel pa	ar rapport aux po	1.21514 2.22592 Vx 0.65154 Sx 0.80718 sur les donnée r = b = a =	0.59774 3.83282 Vy 0.60712 Sy 0.77918 ss individuelles 0.82090 0.79242 0.60617	0.44248 4.12941 Vxy	2.98788 2.67827 2.40273 3.54855 3.34495 3.98619 4.21273 2.00355 3.10917 3.09503	2.93866 2.74489 2.60190 3.51063 3.22267 3.92971 4.08561 2.40273 2.78143 3.22557	-0.31119 -0.15844 -0.26919 -0.08556 -0.30912 -0.07948 0.21311 -0.12849 1.14707 0.20600	-0.34760 -0.58653 -0.20050 -0.15691 0.18114 -0.00244 0.87994 -0.52767 0.92996 0.05318
	Ecart-type résiduel pa	ar rapport aux po	1.21514 2.22592 Vx 0.65154 Sx 0.80718 sur les donnée r = b = a =	0.59774 3.83282 Vy 0.60712 Sy 0.77918 ss individuelles 0.82090 0.79242 0.60617	0.44248 4.12941 Vxy	2.98788 2.67827 2.40273 3.54855 3.34495 3.98619 4.21273 2.00355 3.10917 3.09503 3.86530	2.93866 2.74489 2.60190 3.51063 3.22267 3.92971 4.08561 2.40273 2.78143 3.22557 3.76456	-0.31119 -0.15844 -0.26919 -0.08556 -0.30912 -0.07948 0.21311 -0.12849 1.14707 0.20600 -0.52288	-0.34760 -0.58653 -0.20050 -0.15691 0.18114 -0.00244 -0.52767 0.92996 -0.05318 -0.03216
	Ecart-type résiduel pa	ar rapport aux po	1.21514 2.22592 Vx 0.65154 Sx 0.80718 sur les donnée r = b = a =	0.59774 3.83282 Vy 0.60712 Sy 0.77918 ss individuelles 0.82090 0.79242 0.60617	0.44248 4.12941 Vxy	2.98788 2.67827 2.40273 3.54855 3.34495 3.98619 4.21273 2.00355 3.10917 3.09503 3.86530 2.76946 3.11602	2.93866 2.74489 2.60190 3.51063 3.22267 3.92971 4.08561 2.40273 2.78143 3.22557 3.76456 2.79359 2.87513	-0.31119 -0.15844 -0.26919 -0.08556 -0.30912 -0.07948 -0.21311 -0.12849 1.14707 -0.20600 -0.52288 0.27193 -0.16663	-0.34760 -0.58653 -0.20050 -0.15691 0.18114 -0.00244 0.87994 -0.52767 0.92996 0.05318 -0.03216 -0.49256 0.16626
	Ecart-type résiduel pa	ar rapport aux po	1.21514 2.22592 Vx 0.65154 Sx 0.80718 sur les donnée r = b = a =	0.59774 3.83282 Vy 0.60712 Sy 0.77918 ss individuelles 0.82090 0.79242 0.60617	0.44248 4.12941 Vxy	2.98788 2.67827 2.40273 3.54855 3.34495 3.98619 4.21273 2.00355 3.10917 3.09503 3.86530 2.76946	2.93866 2.74489 2.60190 3.51063 3.22267 3.92971 4.08561 2.40273 2.78143 3.22557 3.76456 2.79359	-0.31119 -0.15844 -0.26919 -0.08556 -0.30912 -0.07948 0.21311 -0.12849 1.14707 0.20600 -0.52288 0.27193	-0.34760 -0.58653 -0.20050 -0.15691 0.18114 -0.00244 0.87994 -0.52767 0.92996 0.05318 -0.03216 -0.49256
	Ecart-type résiduel pa	ar rapport aux po	1.21514 2.22592 Vx 0.65154 Sx 0.80718 sur les donnée r = b = a =	0.59774 3.83282 Vy 0.60712 Sy 0.77918 ss individuelles 0.82090 0.79242 0.60617	0.44248 4.12941 Vxy	2.98788 2.67827 2.40273 3.54855 3.34495 3.396619 4.21273 2.00355 3.10917 3.09503 3.86530 2.76946 3.11602 2.40273 3.46590 3.60811	2.93866 2.74489 2.60190 3.51063 3.22267 4.08561 2.40273 2.78143 3.22557 3.76456 2.79359 2.87513 2.00355 3.46590 3.42022	-0.31119 -0.15844 -0.26919 -0.08556 -0.30912 -0.07948 0.21311 -0.12849 1.14707 0.20600 -0.52288 0.27193 -0.16663 -0.4849 -0.66656 -0.60811	-0.34760 -0.58653 -0.20050 -0.15691 0.18114 -0.00244 -0.52767 0.92996 0.05318 -0.03216 -0.49256 0.16626 0.47357 0.39143 0.55290
	Ecart-type résiduel pa	ar rapport aux po	1.21514 2.22592 Vx 0.65154 Sx 0.80718 sur les donnée r = b = a =	0.59774 3.83282 Vy 0.60712 Sy 0.77918 ss individuelles 0.82090 0.79242 0.60617	0.44248 4.12941 Vxy	2.98788 2.67827 2.40273 3.54855 3.98619 4.21273 2.00355 3.10917 3.09503 3.86530 2.76946 3.11602 2.40273 3.46590 3.60811 3.32475 2.50220	2.93866 2.74489 2.60190 3.51063 3.22267 4.08561 2.40273 2.78143 3.22557 3.76456 2.79359 2.87513 2.00355 3.46590 3.42022 3.25836 2.74489	-0.31119 -0.15844 -0.26919 -0.08556 -0.30912 -0.07948 -0.21311 -0.12849 -1.14707 -0.20600 -0.52288 -0.27193 -0.16663 -0.60811 -0.06948 -0.21381	-0.34760 -0.58653 -0.20050 -0.15681 -0.16114 -0.00244 -0.52767 -0.52767 -0.9296 -0.5318 -0.49256 -0.49256 -0.47367 -0.39143 -0.55290 -0.161670 -0.03732
	Ecart-type résiduel pa	ar rapport aux po	1.21514 2.22592 Vx 0.65154 Sx 0.80718 sur les donnée r = b = a =	0.59774 3.83282 Vy 0.60712 Sy 0.77918 ss individuelles 0.82090 0.79242 0.60617	0.44248 4.12941 Vxy	2.98788 2.677827 2.40273 3.54855 3.98619 4.21273 3.99503 3.09503 2.76946 3.11602 2.40273 3.46590 3.60811 3.32475 2.50220 2.393330	2,93866 2,74489 2,60190 3,51063 3,22267 3,92971 4,08561 2,40273 2,78143 3,22557 3,76456 2,79359 2,87513 2,00355 3,42022 3,25836 2,74489 2,25088	-0.31119 -0.15844 -0.26919 -0.08556 -0.30912 -0.07948 -0.21311 -0.12849 1.14707 -0.20600 -0.52288 0.27193 -0.16663 -0.48449 -0.66656 -0.60811 -0.06948 0.21381 0.24017	-0.34760 -0.58653 -0.20050 -0.15691 -0.15691 -0.15691 -0.15767 -0.02767 -0.03216 -0.49256 -0.49256 -0.47357 -0.39143 -0.52707 -0.39143 -0.52707 -0.39143 -0.561670 -0.37322 -0.61244
	Ecart-type résiduel pa	ar rapport aux po	1.21514 2.22592 Vx 0.65154 Sx 0.80718 sur les donnée r = b = a =	0.59774 3.83282 Vy 0.60712 Sy 0.77918 ss individuelles 0.82090 0.79242 0.60617	0.44248 4.12941 Vxy	2.98788 2.67827 2.40273 3.54855 3.98619 4.21273 2.00355 3.10917 3.09503 3.86530 2.76946 3.11602 2.40273 3.46590 3.60811 3.32475 2.50220	2.93866 2.74489 2.60190 3.51063 3.22267 4.08561 2.40273 2.78143 3.22557 3.76456 2.79359 2.87513 2.00355 3.46590 3.42022 3.25836 2.74489	-0.31119 -0.15844 -0.26919 -0.08556 -0.30912 -0.07948 -0.21311 -0.12849 -1.14707 -0.20600 -0.52288 -0.27193 -0.16663 -0.60811 -0.06948 -0.21381	-0.34760 -0.58653 -0.20050 -0.15681 -0.16114 -0.00244 -0.52767 -0.52767 -0.9296 -0.5318 -0.49256 -0.49256 -0.47367 -0.39143 -0.55290 -0.161670 -0.03732
	Ecart-type résiduel pa	0.65536233	1.21514 2.22592 Vx Vx 0.65154 Sx 0.80718 ur les donnée b = a =	0.59774 3.83282 Vy Vy 0.60712 Sy 0.77918 sindividualles 0.82090 0.79242 0.60617	0.44248 4.12941 Vxy 0.51629	2.99788 2.67827 2.40273 3.54855 3.98619 4.21273 2.00355 3.10917 3.08530 2.76946 3.11602 2.40273 3.46590 3.60811 3.32475 2.50220 2.93330 3.6011 3.32475 4.34102	2.93866 2.74489 2.60190 3.51063 3.22267 3.92971 4.08561 2.40273 2.78143 3.22557 3.76456 2.79359 2.87513 2.00355 3.45202 2.25088 4.03984 4.38924	-0.31119 -0.15844 -0.26919 -0.08556 -0.08556 -0.30912 -0.07948 -0.21311 -0.12849 -1.14707 -0.50288 -0.27193 -0.16663 -0.66655 -0.60811 -0.08648 -0.21381 -0.21381 -0.21094 -0.12084 -0.26104	-0.34760 -0.58653 -0.20050 -0.15863 -0.20050 -0.15814 -0.00244 -0.52767 -0.52767 -0.03216 -0.49256 -0.49256 -0.47357 -0.9296 -0.55290 -0.16626 -0.47357 -0.9
	Ecart-type résiduel ps Syrx =	0.65536233	1.21514 2.22592 Vx 0.65154 Sx 0.80718 sur les donnée f = b = a =	0.59774 3.83282 Vy 0.60712 Sy 0.77918 s individuelles 0.82090 0.79242 0.60617	0.44248 4.12941 Vxy 0.51629	2.99788 2.67827 2.40273 3.54855 3.98619 4.21273 2.00355 3.10917 3.09503 3.86530 3.16927 3.46590 3.14602 2.4027 3.46590 3.46590 4.01283 4.34102	2,93866 2,74489 2,60190 3,51083 3,52287 3,92971 4,08561 2,40273 2,78143 3,22557 3,7645 2,73359 2,87513 2,00355 3,46590 3,42022 3,25836 2,74489 2,25088 4,03984 4,38924	-0.31119 -0.15844 -0.26919 -0.00556 -0.30912 -0.07948 -0.21311 -0.12849 -1.14707 -0.20600 -0.52284 -0.16663 -0.44849 -0.66656 -0.60811 -0.09948 -0.21081 -0.21094 -0.21094	-0.34760 -0.58653 -0.20050 -0.15863 -0.20050 -0.15814 -0.00244 -0.52767 -0.52767 -0.03216 -0.49256 -0.49256 -0.47357 -0.9296 -0.55290 -0.16626 -0.47357 -0.9
<u> </u>	Ecart-type résiduel ps Syrx =	0.65536233	1.21514 2.22592 Vx Vx 0.65154 Sx 0.80718 ur les donnée b = a =	0.59774 3.83282 Vy Vy 0.60712 Sy 0.77918 s individualies 0.82090 0.76242 0.60617 la régression 0.42453 0.12680	0.44248 4.12941 Vxy 0.51629 t(a) t(b)	2.99788 2.67827 2.40273 3.54855 3.34495 3.39619 4.21273 2.00355 3.10917 3.09503 3.86530 2.76946 3.11602 2.40273 3.668510 2.40273 3.68530 2.40273 3.46590 3.1602 2.50220 2.93330 4.34102 4.72766 1.63706	2.93866 2.74489 2.60190 3.51063 3.22267 3.92971 4.08561 2.40273 2.78143 3.22557 3.76456 2.79359 2.87573 3.42022 3.285836 2.74489 2.255836 2.74489 2.745836 2.74586 2.74586 2.74586 2.74586 2.74586 2.74586 2.74586 2.74586 2.74586 2.74586 2.74586 2.74586 2.74586 2.74586 2.74586 2.74586 2.74586	-0.31119 -0.15844 -0.26919 -0.08556 -0.08556 -0.30912 -0.07948 -0.21311 -0.12849 -1.14707 -0.50288 -0.27193 -0.16663 -0.66655 -0.60811 -0.08648 -0.21381 -0.21381 -0.21094 -0.12084 -0.26104	-0.34760 -0.58653 -0.20050 -0.15863 -0.20050 -0.15814 -0.00244 -0.52767 -0.52767 -0.03216 -0.49256 -0.49256 -0.47357 -0.9296 -0.55290 -0.16626 -0.47357 -0.9
<u> </u>	Ecart-type résiduel ps Syrx = Syrx = Ecart-types des parar	0.65536233	1.21514 2.22592 Vx Vx 0.65154 Sx 0.80718 sur les donnée r = b = a = ints estimés de	0.59774 3.83282 Vy 0.60712 Sy 0.77918 s individuelles 0.82090 0.79242 0.60617 la régression 0.42453 0.12680	0.44248 4.12941 Vxy 0.51629	2.99788 2.67827 2.40273 3.54855 3.34495 3.39619 4.21273 2.00355 3.10917 3.09503 3.86530 3.16550 3.1665	2.93866 2.74489 2.60190 3.51063 3.22267 3.92971 4.08561 2.40273 2.78143 3.22557 3.76456 2.274359 2.274359 2.274359 2.274359 2.274459 2.27	-0.31119 -0.15844 -0.26919 -0.08556 -0.08556 -0.30912 -0.07948 -0.21311 -0.12849 -1.14707 -0.50288 -0.27193 -0.16663 -0.66655 -0.60811 -0.08648 -0.21381 -0.21381 -0.21094 -0.12084 -0.26104	-0.34760 -0.58653 -0.20050 -0.15863 -0.20050 -0.15814 -0.00244 -0.52767 -0.52767 -0.03216 -0.49256 -0.49256 -0.47357 -0.9296 -0.55290 -0.16626 -0.47357 -0.9
<u> </u>	Ecart-type résiduel ps Syrx = Syrx = Ecart-types des parar	0.65536233	1.21514 2.22592 Vx Vx 0.65154 Sx 0.80718 sur les donnée r = a = ints estimés de	0.59774 3.83282 Vy 0.60712 Sy 0.77918 s individuelles 0.82090 0.79242 0.60617 la régression Méthode 0 Méthode 0 0.42453	0.44248 4.12941 Vxy 0.51629 t(a) t(b) t(b)	2.99788 2.67827 2.40273 3.54855 3.34495 3.39819 4.21273 2.00355 3.10917 3.09503 3.86530 3.186	2.93866 2.74489 2.60190 3.51063 3.22267 3.32297 4.08561 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.87513 2.00355 3.42502 2.74489 2.25088 4.09984 4.38924 9.0145 9.014	-0.31119 -0.15844 -0.26919 -0.08556 -0.08556 -0.30912 -0.07948 -0.21311 -0.12849 -1.14707 -0.50288 -0.27193 -0.16663 -0.66655 -0.60811 -0.08648 -0.21381 -0.21381 -0.21094 -0.12084 -0.26104	-0.34760 -0.58653 -0.20050 -0.15863 -0.20050 -0.15814 -0.00244 -0.52767 -0.52767 -0.03216 -0.49256 -0.49256 -0.47357 -0.9296 -0.55290 -0.16626 -0.47357 -0.9
<u> </u>	Ecart-type résiduel pa Sy:x = Sy:x = Ecart-types des paran Répétabilité = 2,8 Sr	0.65536233	1.21514 2.22592 Vx Vx 0.65154 Sx Sx 0.80718 sur les donnée r = a = ints estimés de S(a) S(b) S(b) S(b) S(b) S(c) S(c) S(c) S(c) S(c) S(c) S(c) S(c	0.59774 3.83282 Vy 0.60712 Sy 0.77918 s individuelles 0.82090 0.79242 0.60617 la régression Méthode 0 Méthode 0 0.42453	0.44248 4.12941 Vxy 0.51629 t(a) t(b) t(b) te référence sssr ssss ssss ssss	2.99788 2.67827 2.40273 3.54855 3.34495 3.39619 4.21273 3.10917 3.1091	2.93866 2.74489 2.60190 3.51063 3.22267 3.32297 4.08561 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.87513 2.00355 3.42502 2.74489 2.25088 4.09984 4.38924 9.0145 9.014	-0.31119 -0.15844 -0.26919 -0.08556 -0.08556 -0.30912 -0.07948 -0.21311 -0.12849 -1.14707 -0.50288 -0.27193 -0.16663 -0.66655 -0.60811 -0.08648 -0.21381 -0.21381 -0.21094 -0.12084 -0.26104	-0.34760 -0.58653 -0.20050 -0.15863 -0.20050 -0.15814 -0.00244 -0.52767 -0.52767 -0.03216 -0.49256 -0.49256 -0.47357 -0.9296 -0.55290 -0.16626 -0.47357 -0.9
<u> </u>	Ecart-type résiduel ps Syrx = Syrx = Ecart-types des parar	0.65536233	1.21514 1.21514 2.22592 Vx Vx 0.65154 Sx 0.060154 Sx 0.060154 Sx sur les donnée r =	0.59774 3.83282 Vy 0.60712 Sy 0.77918 s individuelles 0.82090 0.79242 0.60617 la régression Méthode 0 Méthode 0 0.42453	0.44248 4.12941 Vxy 0.51629 t(a) t(b) t(b) te référence sssr ssss ssss ssss	2.99788 2.67827 2.40273 3.54855 3.34495 3.39619 4.21273 3.10917 3.1091	2.93866 2.74489 2.60190 3.51063 3.22267 3.32297 4.08561 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.87513 2.00355 3.42502 2.74489 2.25088 4.09984 4.38924 9.0145 9.014	-0.31119 -0.15844 -0.26919 -0.08556 -0.08556 -0.30912 -0.07948 -0.21311 -0.12849 -1.14707 -0.50288 -0.27193 -0.16663 -0.66655 -0.60811 -0.08648 -0.21381 -0.21381 -0.21094 -0.12084 -0.26104	-0.34760 -0.58653 -0.20050 -0.15863 -0.20050 -0.15814 -0.00244 -0.52767 -0.52767 -0.03216 -0.49256 -0.49256 -0.47357 -0.9296 -0.55290 -0.16626 -0.47357 -0.9
<u> </u>	Ecart-type résiduel pa Sy:x = Sy:x = Ecart-types des paran Répétabilité = 2,8 Sr	0.65536233	1.21514 1.21514 2.22592 Vx Vx 0.65154 Sx Interestimés de la	0.59774 3.83282 Vy 0.60712 Sy 0.77918 s individuelles 0.82090 0.79242 0.60617 la régression Méthode 0 Méthode 0 0.42453	0.44248 4.12941 Vxy 0.51629 t(a) t(b) t(b) te référence sssr ssss ssss ssss	2.99788 2.67827 2.40273 3.54855 3.34495 3.39619 4.21273 3.10917 3.1091	2.93866 2.74489 2.60190 3.51063 3.22267 3.32297 4.08561 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.87513 2.00355 3.42502 2.74489 2.25088 4.09984 4.38924 9.0145 9.014	-0.31119 -0.15844 -0.26919 -0.08556 -0.08556 -0.30912 -0.07948 -0.21311 -0.12849 -1.14707 -0.50288 -0.27193 -0.16663 -0.66655 -0.60811 -0.08648 -0.21381 -0.21381 -0.21094 -0.12084 -0.26104	-0.34760 -0.58653 -0.20050 -0.15863 -0.20050 -0.15814 -0.00244 -0.52767 -0.52767 -0.03216 -0.49256 -0.49256 -0.47357 -0.9296 -0.55290 -0.16626 -0.47357 -0.9
<u> </u>	Ecart-type résiduel pa Sy:x = Sy:x = Ecart-types des paran Répétabilité = 2,8 Sr	0.65536233	1.21514 1.21514 2.22592 Vx Vx 0.65154 Sx 0.80718 sur les donnés r = b = a = ints estimés de S(a) S(b) S(b) S(b) S(b) S(a) S(b) S(b) S(b) S(a) S(b) S(b) S(b) S(a) S(b) S(b) S(b) S(c) S(c) S(c) S(c) S(c) S(c) S(c) S(c	0.59774 3.83282 Vy 0.60712 Sy 0.77918 s individuelles 0.82090 0.79242 0.60617 la régression Méthode 0 Méthode 0 0.42453	0.44248 4.12941 Vxy 0.51629 t(a) t(b) t(b) te référence sssr ssss ssss ssss	2.99788 2.67827 2.40273 3.54855 3.34495 3.39619 4.21273 3.10917 3.1091	2.93866 2.74489 2.60190 3.51063 3.22267 3.32297 4.08561 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.87513 2.00355 3.42502 2.74489 2.25088 4.09984 4.38924 9.0198	-0.31119 -0.15844 -0.26919 -0.08556 -0.08556 -0.30912 -0.07948 -0.21311 -0.12849 -1.14707 -0.50288 -0.27193 -0.16663 -0.66655 -0.60811 -0.08648 -0.21381 -0.21381 -0.21094 -0.12084 -0.26104	-0.34760 -0.58653 -0.20050 -0.15863 -0.20050 -0.15814 -0.00244 -0.52767 -0.52767 -0.03216 -0.49256 -0.49256 -0.47357 -0.9296 -0.55290 -0.16626 -0.47357 -0.9
<u> </u>	Ecart-type résiduel pa Sy:x = Sy:x = Ecart-types des paran Répétabilité = 2,8 Sr	0.65536233	1.21514 1.21514 2.22592 Vx Vx 0.65154 Sx 0.060154 Sx 0.80718 sur les donnée r= a = b = a = ints estimés de S(a) S(b) S(b) S(b) S(a) S(b) S(b) S(a) S(b) S(b) S(b) S(b) S(c) S(c) S(c) S(c) S(c) S(c) S(c) S(c	0.59774 3.83282 Vy 0.60712 Sy 0.77918 s individuelles 0.82090 0.79242 0.60617 la régression Méthode 0 Méthode 0 0.42453	0.44248 4.12941 Vxy 0.51629 t(a) t(b) t(b) te référence sssr ssss ssss ssss	2.99788 2.67827 2.40273 3.54855 3.34495 3.39619 4.21273 3.10917 3.1091	2.93866 2.74489 2.60190 3.51063 3.22267 3.32297 4.08561 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.78143 2.87513 2.00355 3.42502 2.74489 2.25088 4.09984 4.38924 9.0198	-0.31119 -0.15844 -0.26919 -0.08556 -0.08556 -0.30912 -0.07948 -0.21311 -0.12849 -1.14707 -0.50288 -0.27193 -0.16663 -0.66655 -0.60811 -0.08648 -0.21381 -0.21381 -0.21094 -0.12084 -0.26104	-0.34760 -0.58653 -0.20050 -0.15863 -0.20050 -0.15814 -0.00244 -0.52767 -0.52767 -0.03216 -0.49256 -0.49256 -0.47357 -0.9296 -0.55290 -0.16626 -0.47357 -0.9

ANNEXE 4 - Essais complémentaires eaux de baignade

	N° Echantillon		Xplorer64 Enterococci					Méthode NPP E. coli (*)			
N°			R1 R2			R1		R2			
		s dét. d'origi	Résultat	log	s dét. d'origi	Résultat	log	Résultat	log	Résultat	log
1	Eau douce 1	8,33	1,20E+03	3,079	7,6	5,40E+03	3,732	6,70E+03	3,826	4,20E+03	3,623
2	Eau douce 2	4,88	1,40E+05	5,146	4,24	2,90E+05	5,462	3,90E+05	5,591	3,10E+05	5,491
3	Eau douce 3	5,99	3,70E+04	4,568	5,25	8,80E+04	4,944	5,50E+05	5,74	2,70E+05	5,431
4	Eau douce 4	4,33	2,60E+05	5,415	4,84	1,40E+05	5,146	4,20E+05	5,623	5,40E+05	5,732
5	Eau de mer 1	4,87	1,40E+05	5,146	4,64	1,80E+05	5,255	3,50E+04	4,54	2,80E+04	4,443
6	Eau de mer 2	3,96	4,00E+05	5,602	4,79	1,50E+05	5,176	4,40E+05	5,641	4,40E+05	5,641
7	Eau de mer 3	4,16	3,20E+05	5,505	4,42	2,30E+05	5,362	4,40E+05	5,641	8,20E+05	5,914
8	Eau de mer 4	3,66	5,80E+05	5,763	3,54	6,70E+05	5,826	8,20E+05	5,914	8,20E+05	5,914
9	Eau de mer 5	2,21	3,20E+06	6,505	2,84	1,50E+06	6,176	3,40E+06	6,531	3,40E+06	6,531
10	Eau douce 5	4,82	1,50E+05	5,176	6,43	2,20E+04	4,342	1,60E+05	5,203	1,90E+05	5,267
11	Eau douce 6	4,94	1,30E+05	5,114	4,85	1,40E+05	5,146	1,40E+05	5,16	1,20E+05	5,078
12	Eau douce 7	6,91	1,20E+04	4,079	4,83	1,50E+05	5,176	8,80E+04	4,944	8,40E+04	4,926
13	Eau de mer 6	4,41	2,40E+05	5,38	4,53	2,10E+05	5,322	1,50E+05	5,164	1,50E+05	5,183
14	Eau de mer 7	7,4	6,90E+03	3,839	7,82	3,20E+03	3,505	2,00E+03	3,305	1,80E+03	3,264
15	Eau de mer 8	9,01	3,90E+02	2,591	8,33	1,20E+03	3,079	6,80E+02	2,834	6,70E+02	2,825
16	Eau de mer 9	7,55	5,80E+03	3,763	7,69	4,90E+03	3,69	1,10E+03	3,043	1,40E+03	3,137
17	Eau douce 8	7,37	7,20E+03	3,857	7,5	6,10E+03	3,785	4,40E+02	2,645	4,90E+02	2,686
18	Eau de mer 10	8,7	6,40E+02	2,806	10,92	4,50E+01	1,653	1,60E+03	3,215	1,40E+03	3,141
19	Eau douce 9	5,87	4,20E+04	4,623	8,71	6,30E+02	2,799	2,40E+03	3,388	1,90E+03	3,285
20	Eau douce 10	8	2,20E+03	3,342	7,45	6,60E+03	3,82	9,40E+02	2,975	7,90E+02	2,898

Institut Scientifique d'Hygiène et d'Analyse

Exactitude relative - Entérocoques - Eaux de baignade - Données en log

	N	léthode de référenc	e		Méthode alternative				
Echantillon	Répétition 1	Répétition 2	M	SD	Echantillon	Répétition 1	Répétition 2	М	SD
1	3,826	3,623	3,725	0,144	1	3,079	3,732	3,406	0,462
2	5,591	5,491	5,541	0,071	2	5,146	5,462	5,304	0,223
3	5,740	5,431	5,586	0,218	3	4,568	4,944	4,756	0,266
4	5,623	5,732	5,678	0,077	4	5,415	5,146	5,281	0,190
5	4,540	4,443	4,492	0,069	5	5,146	5,255	5,201	0,077
6	5,641	5,641	5,641	0,000	6	5,602	5,176	5,389	0,301
7	5,641	5,914	5,778	0,193	7	5,505	5,362	5,434	0,101
8	5,914	5,914	5,914	0,000	8	5,763	5,826	5,795	0,045
9	6,531	6,531	6,531	0,000	9	6,505	6,176	6,341	0,233
10	5,203	5,267	5,235	0,045	10	5,176	4,342	4,759	0,590
11	5,160	5,078	5,119	0,058	11	5,114	5,146	5,130	0,023
12	4,944	4,926	4,935	0,013	12	4,079	5,176	4,628	0,776
13	5,164	5,183	5,174	0,013	13	5,380	5,322	5,351	0,041
14	3,305	3,264	3,285	0,029	14	3,839	3,505	3,672	0,236
15	2,834	2,825	2,830	0,006	15	2,591	3,079	2,835	0,345
16	3,043	3,137	3,090	0,066	16	3,763	3,690	3,727	0,052
17	2,645	2,686	2,666	0,029	17	3,857	3,785	3,821	0,051
18	3,215	3,141	3,178	0,052	18	2,806	1,653	2,230	0,815
19	3,388	3,285	3,337	0,073	19	4,623	2,799	3,711	1,290
20	2,975	2,898	2,937	0,054	20	3,342	3,820	3,581	0,338

Différence
-0,319
-0,237
-0,829
-0,397
0,709
-0,252
-0,344
-0,120
-0,190
-0,476
0,011
-0,308
0,178
0,388
0,005
0,637
1,156
-0,949
0,375
0,645

q = 20	Mx=	4,533		My=	4,517	
n = 2	MEDx=	5,027		MEDy=	4,758	
N=qn= 40	SDbx=	1,257		SDby=	1,078	
		MEDwx =	0,053		MEDwy =	0,234
		SDwx=	0,085		SDwy=	0,453
		rob. SDwx=	0,079		rob. SDwy=	0,348

M= -0,016 MED= -0,155 Biais

Choix de la méthode

OLS1; x=réf

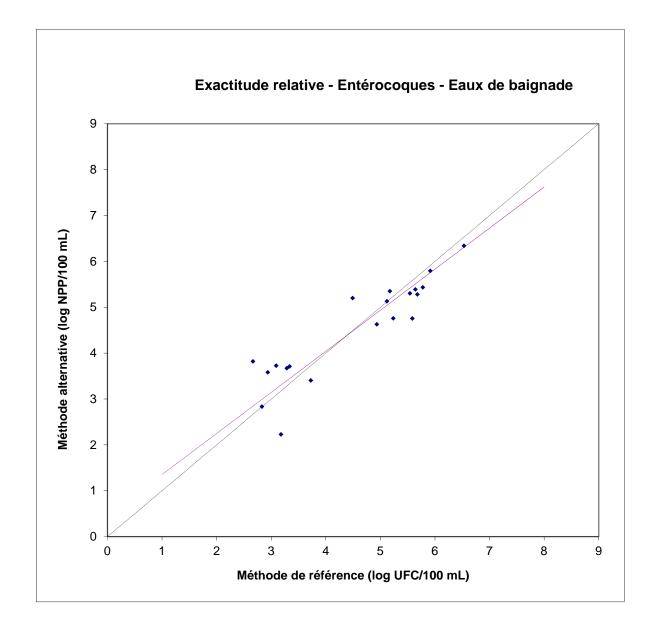
0,458

R= 5,338 rob. R= 4,391

Sx= 1,242 **Sy**= 1,112

r= 0,906 b= 0,895

a=


Res. SD= 0,581

t(b)= 0,306 **t(a)**= 1,303

Répétabilité	Méthode de référence	Méthode alternative
r	0,238	1,269
rob. r	0.222	0.973

M. réf	Alt	Est.Y	Déviation
3,725	3,079	3,793	-0,714
5,541	5,146	5,420	-0,274
5,586	4,568	5,459	-0,891
5,678	5,415	5,542	-0,127
4,492	5,146	4,480	0,666
5,641	5,602	5,509	0,093
5,778	5,505	5,631	-0,126
5,914	5,763	5,754	0,009
6,531	6,505	6,306	0,199
5,235	5,176	5,146	0,030
5,119	5,114	5,042	0,072
4,935	4,079	4,877	-0,798
5,174	5,380	5,091	0,289
3,285	3,839	3,399	0,440
2,830	2,591	2,992	-0,401
3,090	3,763	3,225	0,538
2,666	3,857	2,845	1,012
3,178	2,806	3,304	-0,498
3,337	4,623	3,446	1,177
2,937	3,342	3,088	0,254
3,725	3,732	3,793	-0,061
5,541	5,462	5,420	0,042
5,586	4,944	5,459	-0,515
5,678	5,146	5,542	-0,396
4,492	5,255	4,480	0,775
5,641	5,176	5,509	-0,333
5,778	5,362	5,631	-0,269
5,914	5,826	5,754	0,072
6,531	6,176	6,306	-0,130
5,235	4,342	5,146	-0,804
5,119	5,146	5,042	0,104
4,935	5,176	4,877	0,299
5,174	5,322	5,091	0,231
3,285	3,505	3,399	0,106
2,830	3,079	2,992	0,087
3,090	3,690	3,225	0,465
2,666	3,785	2,845	0,940
3,178	1,653	3,304	-1,651
3,337	2,799	3,446	-0,647
2,937	3,820	3,088	0,732

Les points représentés correspondent aux moyennes des répétitions de chaque échantillon

Institut Scientifique d'Hygiène et d'Analyse 41/60

Exactitude relative - Entérocoques - Toutes catégories protocole général - Données en log

	N	Méthode de référence	ce		Méthode alternative					
Echantillon	Répétition 1	Répétition 2	M	SD	Echantillon	Répétition 1	Répétition 2	M	SD	
EB1	3,826	3,623	3,725	0,144	EB1	3,079	3,732	3,406	0,462	
EB2	5,591	5,491	5,541	0,071	EB2	5,146	5,462	5,304	0,223	
EB3	5,740	5,431	5,586	0,218	EB3	4,568	4,944	4,756	0,266	
EB4	5,623	5,732	5,678	0,077	EB4	5,415	5,146	5,281	0,190	
EB5	4,540	4,443	4,492	0,069	EB5	5,146	5,255	5,201	0,077	
EB6	5,641	5,641	5,641	0,000	EB6	5,602	5,176	5,389	0,301	
EB7	5,641	5,914	5,778	0,193	EB7	5,505	5,362	5,434	0,101	
EB8	5,914	5,914	5,914	0,000	EB8	5,763	5,826	5,795	0,045	
EB9	6,531	6,531	6,531	0,000	EB9	6,505	6,176	6,341	0,233	
EB10	5,203	5,267	5,235	0,045	EB10	5,176	4,342	4,759	0,590	
EB11	5,160	5,078	5,119	0,058	EB11	5,114	5,146	5,130	0,023	
EB12	4,944	4,926	4,935	0,013	EB12	4,079	5,176	4,628	0,776	
EB13	5,164	5,183	5,174	0,013	EB13	5,380	5,322	5,351	0,041	
EB14	3,305	3,264	3,285	0,029	EB14	3,839	3,505	3,672	0,236	
EB15	2,834	2,825	2,830	0,006	EB15	2,591	3,079	2,835	0,345	
EB16	3,043	3,137	3,090	0,066	EB16	3,763	3,690	3,727	0,052	
EB17	2,645	2,686	2,666	0,029	EB17	3,857	3,785	3,821	0,051	
EB18	3,215	3,141	3,178	0,052	EB18	2,806	1,653	2,230	0,815	
EB19	3.388	3,285	3,337	0.073	EB19	4,623	2.799	3.711	1,290	
EB20	2,975	2,898	2,937	0,054	EB20	3,342	3,820	3,581	0,338	
ERSTEP1	3,004	2,943	2,974	0,043	ERSTEP1	2,677	2,591	2,634	0,061	
ERSTEP2	2,615	2,699	2,657	0,059	ERSTEP2	2,520	2,158	2,339	0,256	
ERSTEP3	2,267	2,519	2,393	0,178	ERSTEP3	2,134	2,401	2,267	0,189	
ERSTEP4	3,713	3,666	3,690	0,034	ERSTEP4	3,462	3,354	3,408	0,077	
ERSTEP5	3,456	3,301	3,379	0,110	ERSTEP5	3,037	3,403	3,220	0,259	
ERSTEP6	4,265	4,193	4,229	0,051	ERSTEP6	3,907	3,927	3,917	0,014	
ERSTEP7	4,551	4,391	4,471	0,114	ERSTEP7	4,427	4,966	4,696	0,381	
ERSTEP8	1,763	2,267	2,015	0,356	ERSTEP8	1,875	1,875	1,875	0,000	
ERSTEP9	3,158	2,745	2,952	0,292	ERSTEP9	4,255	3,712	3,984	0,384	
ERSTEP10	3,140	3,305	3,223	0,117	ERSTEP10	3,301	3,279	3,290	0,016	
ERSTEP11	4,114	3,986	4,050	0,091	ERSTEP11	3,342	3,732	3,537	0,276	
ERSTEP12	2,730	2,760	2,745	0,022	ERSTEP12	3,041	2,301	2,671	0,524	
ERSTEP13	3,167	2,863	3,015	0,215	ERSTEP13	2,949	3,041	2,995	0,065	
ERSTEP14	2,267	1,763	2,015	0,356	ERSTEP14	1,954	2,477	2,216	0,370	
ERSTEP15	3,609	3,609	3,609	0,000	ERSTEP15	2,799	3,857	3,328	0,748	
ERSTEP16	3,788	3,551	3,670	0,167	ERSTEP16	3,000	3,973	3,487	0,688	
ERSTEP17	3,431	3,346	3,389	0,060	ERSTEP17	3,255	3,875	3,565	0,438	
ERSTEP18	2,393	2,699	2,546	0,217	ERSTEP18	2,716	2,708	2,712	0,006	
ERSTEP19	2,255	2,076	2,165	0,127	ERSTEP19	2,633	2,863	2,748	0,163	
ERSTEP20	4,299	4,408	4,354	0,077	ERSTEP20	3,892	2,875	3,384	0,719	
ERSTEP21	4,713	4,774	4,744	0,043	ERSTEP21	4,602	4,531	4,567	0,050	

q = 41Mx =3,877 My= 3,834 **n**= 2 MEDx =3,609 MEDy= 3,581 SDby= N=qn= 82 SDbx= 1,227 1,134 MEDwx = 0,066 MEDwy = 0,236 SDwx= 0,133 SDwy= 0,408 rob. SDwx= 0,099 rob. SDwy= 0,350 Différence -0,319 -0,237 -0,829 -0,397 0,709 -0,252 -0,344 -0,120 -0,190 -0,476 0,011 -0,308 0,178 0,388 0,005 0,637 1,156 -0,949 0.375 0,645 -0,340 -0,318 -0,125 -0.281 -0,158 -0,312 0,225 -0.140 1,032 0,067 -0,513 -0,074 -0,020 0,200 -0,280 -0,183 0,176 0.166 0,583 -0,970 -0,177

M= -0,043 MED= -0,140 Biais Choix de la méthode OLS1; x=réf

Répétabilité

rob. r

R= 3,082 3,553 rob. R=

> Sx= 1,223

1,163 Sy=

0,925 r= 0,951 b=

a=

0,146 Res. SD= 0,535

S(b) = S(a) = 0,254 p(t;b=1)=0,849 t(b)= 1,031 p(t;a=0)=0,888 t(a)=

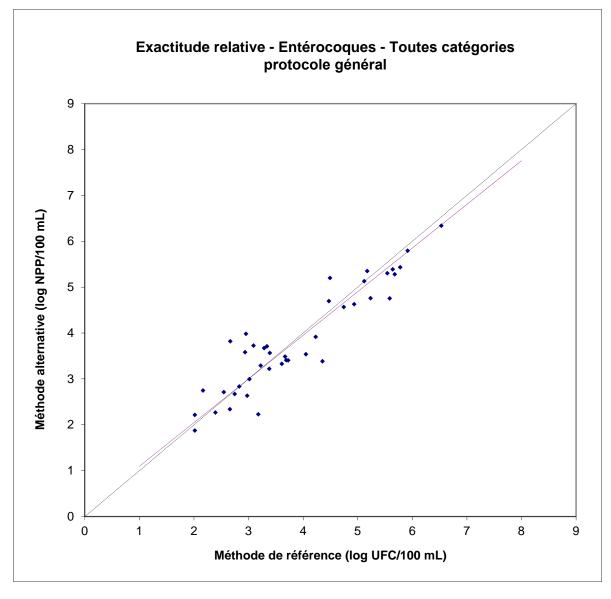
> Méthode alternative 1,144

0,980

0,191

0,141

1,097 1,000 8,000 7,756


Méthode de référence

0,371

0,276

M. réf	Alt	Est.Y	Déviation
3,725	3,079	3,689	-0,610
5,541	5,146	5,417	-0,271
5,586	4,568	5,459	-0,891
5,678	5,415	5,547	-0,132
4,492	5,146	4,419	0,727
5,641	5,602	5,512	0,090
5,778	5,505	5,642	-0,137
5,914	5,763	5,772	-0,009
6,531	6,505	6,359	0,146
5,235	5,176	5,126	0,050
5,119	5,114	5,016	0,098
4,935	4,079	4,841	-0,762
5,174	5,380	5,067	0,313
3,285	3,839	3,270	0,569
2,830	2,591	2,838	-0,247
3,090	3,763	3,085	0,678
2,666	3,857	2,681	1,176
3,178	2,806	3,169	-0,363
3,337	4,623	3,320	1,303
2,937	3,342	2,939	0,403
2,974	2,677	2,975	-0,298
2,657	2,520	2,673	-0,154
2,393	2,134	2,422	-0,289
3,690	3,462	3,656	-0,193
3,379	3,037	3,360	-0,323
4,229	3,907	4,169	-0,262
4,471	4,427	4,399	0,027
2,015	1,875	2,063	-0,188
2,952	4,255	2,954	1,301
3,223	3,301	3,211	0,090
4,050	3,342	3,999	-0,656
2,745	3,041	2,757	0,284
3,015	2,949	3,014	-0,065
2,015	1,954	2,063	-0,109
3,609	2,799	3,579	-0,779
3,670	3,000	3,637	-0,637
3,389	3,255	3,370	-0,114
2,546	2,716	2,568	0,148
2,165	2,633	2,206	0,428
4,354	3,892	4,287	-0,395
4,744	4,602	4,659	-0,056

Les points représentés correspondent aux moyennes des répétitions de chaque échantillon

3,725 3,732 3,689 0,043 5,541 5,462 5,417 0,045 5,586 4,944 5,459 -0,515 5,678 5,146 5,547 -0,401 4,492 5,255 4,419 0,836 5,641 5,176 5,512 -0,336 5,778 5,362 5,642 -0,280 5,914 5,826 5,772 0,054 6,531 6,176 6,359 -0,183 5,235 4,342 5,126 -0,784 5,119 5,146 5,016 0,130 4,935 5,176 4,841 0,335 5,174 5,322 5,067 0,255 3,285 3,505 3,270 0,235 2,830 3,079 2,838 0,241 3,090 3,690 3,085 0,605 2,666 3,785 2,681 1,104 3,178 1,653 3,169 -1,516 3,337				
5,586 4,944 5,459 -0,515 5,678 5,146 5,547 -0,401 4,492 5,255 4,419 0,836 5,641 5,176 5,512 -0,336 5,778 5,362 5,642 -0,280 5,914 5,826 5,772 0,054 6,531 6,176 6,359 -0,183 5,235 4,342 5,126 -0,784 5,119 5,146 5,016 0,130 4,935 5,176 4,841 0,335 5,174 5,322 5,067 0,255 3,285 3,505 3,270 0,235 2,830 3,079 2,838 0,241 3,090 3,690 3,085 0,605 2,666 3,785 2,681 1,104 3,178 1,653 3,169 -1,516 3,337 2,799 3,320 -0,521 2,937 3,820 2,939 0,881 2,974	3,725	3,732	3,689	0,043
5,678 5,146 5,547 -0,401 4,492 5,255 4,419 0,836 5,641 5,176 5,512 -0,386 5,778 5,362 5,642 -0,280 5,914 5,826 5,772 0,054 6,531 6,176 6,359 -0,183 5,235 4,342 5,126 -0,784 5,119 5,146 5,016 0,130 4,935 5,176 4,841 0,335 5,174 5,322 5,067 0,255 3,285 3,505 3,270 0,235 2,830 3,079 2,838 0,241 3,090 3,690 3,085 0,605 2,666 3,785 2,681 1,104 3,178 1,653 3,169 -1,516 3,337 2,799 3,320 -0,521 2,937 3,820 2,939 0,881 2,974 2,591 2,975 -0,384 2,657	5,541	5,462	5,417	0,045
4,492 5,255 4,419 0,836 5,641 5,176 5,512 -0,336 5,778 5,362 5,642 -0,280 5,914 5,826 5,772 0,054 6,531 6,176 6,359 -0,183 5,235 4,342 5,126 -0,784 5,119 5,146 5,016 0,130 4,935 5,176 4,841 0,335 5,174 5,322 5,067 0,255 3,285 3,505 3,270 0,235 2,830 3,079 2,838 0,241 3,090 3,690 3,085 0,605 2,666 3,785 2,681 1,104 3,178 1,653 3,169 -1,516 3,337 2,799 3,320 -0,521 2,937 3,820 2,939 0,881 2,974 2,591 2,975 -0,384 2,657 2,158 2,673 -0,515 2,393	5,586	4,944	5,459	-0,515
5,641 5,176 5,512 -0,336 5,778 5,362 5,642 -0,280 5,914 5,826 5,772 0,054 6,531 6,176 6,359 -0,183 5,235 4,342 5,126 -0,784 5,119 5,146 5,016 0,130 4,935 5,176 4,841 0,335 5,174 5,322 5,067 0,255 3,285 3,505 3,270 0,235 2,830 3,079 2,838 0,241 3,090 3,690 3,085 0,605 2,666 3,785 2,681 1,104 3,178 1,653 3,169 -1,516 3,337 2,799 3,320 -0,521 2,937 3,820 2,939 0,881 2,974 2,591 2,975 -0,384 2,657 2,158 2,673 -0,515 2,393 2,401 2,422 -0,021 3,690	5,678	5,146	5,547	-0,401
5,778 5,362 5,642 -0,280 5,914 5,826 5,772 0,054 6,531 6,176 6,359 -0,183 5,235 4,342 5,126 -0,784 5,119 5,146 5,016 0,130 4,935 5,176 4,841 0,335 5,174 5,322 5,067 0,255 3,285 3,505 3,270 0,235 2,830 3,079 2,838 0,241 3,090 3,690 3,085 0,605 2,666 3,785 2,681 1,104 3,178 1,653 3,169 -1,516 3,337 2,799 3,320 -0,521 2,937 3,820 2,939 0,881 2,974 2,591 2,975 -0,384 2,657 2,158 2,673 -0,515 2,393 2,401 2,422 -0,021 3,690 3,354 3,656 -0,302 3,379	4,492	5,255	4,419	0,836
5,914 5,826 5,772 0,054 6,531 6,176 6,359 -0,183 5,235 4,342 5,126 -0,784 5,119 5,146 5,016 0,130 4,935 5,176 4,841 0,335 5,174 5,322 5,067 0,255 3,285 3,505 3,270 0,235 2,830 3,079 2,838 0,241 3,090 3,690 3,085 0,605 2,666 3,785 2,681 1,104 3,178 1,653 3,169 -1,516 3,337 2,799 3,320 -0,521 2,937 3,820 2,939 0,881 2,974 2,591 2,975 -0,384 2,657 2,158 2,673 -0,515 2,393 2,401 2,422 -0,021 3,379 3,403 3,360 0,043 4,229 3,927 4,169 -0,242 4,471	5,641	5,176	5,512	-0,336
6,531 6,176 6,359 -0,183 5,235 4,342 5,126 -0,784 5,119 5,146 5,016 0,130 4,935 5,176 4,841 0,335 5,174 5,322 5,067 0,255 3,285 3,505 3,270 0,235 2,830 3,079 2,838 0,241 3,090 3,690 3,085 0,605 2,666 3,785 2,681 1,104 3,178 1,653 3,169 -1,516 3,337 2,799 3,320 -0,521 2,937 3,820 2,939 0,881 2,974 2,591 2,975 -0,384 2,657 2,158 2,673 -0,515 2,393 2,401 2,422 -0,021 3,690 3,354 3,656 -0,302 3,379 3,403 3,360 0,043 4,229 3,927 4,169 -0,242 4,471	5,778	5,362	5,642	-0,280
5,235 4,342 5,126 -0,784 5,119 5,146 5,016 0,130 4,935 5,176 4,841 0,335 5,174 5,322 5,067 0,255 3,285 3,505 3,270 0,235 2,830 3,079 2,838 0,241 3,090 3,690 3,085 0,605 2,666 3,785 2,681 1,104 3,178 1,653 3,169 -1,516 3,337 2,799 3,320 -0,521 2,937 3,820 2,939 0,881 2,974 2,591 2,975 -0,384 2,657 2,158 2,673 -0,515 2,393 2,401 2,422 -0,021 3,690 3,354 3,656 -0,302 3,379 3,403 3,360 0,043 4,229 3,927 4,169 -0,242 4,471 4,966 4,399 0,566 2,015	5,914	5,826	5,772	0,054
5,119 5,146 5,016 0,130 4,935 5,176 4,841 0,335 5,174 5,322 5,067 0,255 3,285 3,505 3,270 0,235 2,830 3,079 2,838 0,241 3,090 3,690 3,085 0,605 2,666 3,785 2,681 1,104 3,178 1,653 3,169 -1,516 3,337 2,799 3,320 -0,521 2,937 3,820 2,939 0,881 2,974 2,591 2,975 -0,384 2,657 2,158 2,673 -0,515 2,393 2,401 2,422 -0,021 3,690 3,354 3,656 -0,302 3,379 3,403 3,360 0,043 4,229 3,927 4,169 -0,242 4,471 4,966 4,399 0,566 2,015 1,875 2,063 -0,188 2,952	6,531	6,176	6,359	-0,183
4,935 5,176 4,841 0,335 5,174 5,322 5,067 0,255 3,285 3,505 3,270 0,235 2,830 3,079 2,838 0,241 3,090 3,690 3,085 0,605 2,666 3,785 2,681 1,104 3,178 1,653 3,169 -1,516 3,337 2,799 3,320 -0,521 2,937 3,820 2,939 0,881 2,974 2,591 2,975 -0,384 2,657 2,158 2,673 -0,515 2,393 2,401 2,422 -0,021 3,690 3,354 3,656 -0,302 3,379 3,403 3,360 0,043 4,229 3,927 4,169 -0,242 4,471 4,966 4,399 0,566 2,015 1,875 2,063 -0,188 2,952 3,712 2,954 0,758 3,223	5,235	4,342	5,126	-0,784
5,174 5,322 5,067 0,255 3,285 3,505 3,270 0,235 2,830 3,079 2,838 0,241 3,090 3,690 3,085 0,605 2,666 3,785 2,681 1,104 3,178 1,653 3,169 -1,516 3,337 2,799 3,320 -0,521 2,937 3,820 2,939 0,881 2,974 2,591 2,975 -0,384 2,657 2,158 2,673 -0,515 2,393 2,401 2,422 -0,021 3,690 3,354 3,656 -0,302 3,379 3,403 3,360 0,043 4,229 3,927 4,169 -0,242 4,471 4,966 4,399 0,566 2,015 1,875 2,063 -0,188 2,952 3,712 2,954 0,758 3,223 3,279 3,211 0,067 4,050	5,119	5,146	5,016	0,130
3,285 3,505 3,270 0,235 2,830 3,079 2,838 0,241 3,090 3,690 3,085 0,605 2,666 3,785 2,681 1,104 3,178 1,653 3,169 -1,516 3,337 2,799 3,320 -0,521 2,937 3,820 2,939 0,881 2,974 2,591 2,975 -0,384 2,657 2,158 2,673 -0,515 2,393 2,401 2,422 -0,021 3,690 3,354 3,656 -0,302 3,379 3,403 3,360 0,043 4,229 3,927 4,169 -0,242 4,471 4,966 4,399 0,566 2,015 1,875 2,063 -0,188 2,952 3,712 2,954 0,758 3,223 3,279 3,211 0,067 4,050 3,732 3,999 -0,266 2,745	4,935	5,176	4,841	0,335
2,830 3,079 2,838 0,241 3,090 3,690 3,085 0,605 2,666 3,785 2,681 1,104 3,178 1,653 3,169 -1,516 3,337 2,799 3,320 -0,521 2,937 3,820 2,939 0,881 2,974 2,591 2,975 -0,384 2,657 2,158 2,673 -0,515 2,393 2,401 2,422 -0,021 3,690 3,354 3,656 -0,302 3,379 3,403 3,360 0,043 4,229 3,927 4,169 -0,242 4,471 4,966 4,399 0,566 2,015 1,875 2,063 -0,188 2,952 3,712 2,954 0,758 3,223 3,279 3,211 0,067 4,050 3,732 3,999 -0,266 2,745 2,301 2,757 -0,456 3,015	5,174	5,322		
3,090 3,690 3,085 0,605 2,666 3,785 2,681 1,104 3,178 1,653 3,169 -1,516 3,337 2,799 3,320 -0,521 2,937 3,820 2,939 0,881 2,974 2,591 2,975 -0,384 2,657 2,158 2,673 -0,515 2,393 2,401 2,422 -0,021 3,690 3,354 3,656 -0,302 3,379 3,403 3,360 0,043 4,229 3,927 4,169 -0,242 4,471 4,966 4,399 0,566 2,015 1,875 2,063 -0,188 2,952 3,712 2,954 0,758 3,223 3,279 3,211 0,067 4,050 3,732 3,999 -0,266 2,745 2,301 2,757 -0,456 3,015 3,041 3,014 0,027 2,015	3,285	3,505	3,270	
2,666 3,785 2,681 1,104 3,178 1,653 3,169 -1,516 3,337 2,799 3,320 -0,521 2,937 3,820 2,939 0,881 2,974 2,591 2,975 -0,384 2,657 2,158 2,673 -0,515 2,393 2,401 2,422 -0,021 3,690 3,354 3,656 -0,302 3,379 3,403 3,360 0,043 4,229 3,927 4,169 -0,242 4,471 4,966 4,399 0,566 2,015 1,875 2,063 -0,188 2,952 3,712 2,954 0,758 3,223 3,279 3,211 0,067 4,050 3,732 3,999 -0,266 2,745 2,301 2,757 -0,456 3,015 3,041 3,014 0,027 2,015 2,477 2,063 0,414 3,609	2,830	3,079	2,838	0,241
3,178 1,653 3,169 -1,516 3,337 2,799 3,320 -0,521 2,937 3,820 2,939 0,881 2,974 2,591 2,975 -0,384 2,657 2,158 2,673 -0,515 2,393 2,401 2,422 -0,021 3,690 3,354 3,656 -0,302 3,379 3,403 3,360 0,043 4,229 3,927 4,169 -0,242 4,471 4,966 4,399 0,566 2,015 1,875 2,063 -0,188 2,952 3,712 2,954 0,758 3,223 3,279 3,211 0,067 4,050 3,732 3,999 -0,266 2,745 2,301 2,757 -0,456 3,015 3,041 3,014 0,027 2,015 2,477 2,063 0,414 3,609 3,857 3,579 0,279 3,670	3,090	3,690	3,085	0,605
3,337 2,799 3,320 -0,521 2,937 3,820 2,939 0,881 2,974 2,591 2,975 -0,384 2,657 2,158 2,673 -0,515 2,393 2,401 2,422 -0,021 3,690 3,354 3,656 -0,302 3,379 3,403 3,360 0,043 4,229 3,927 4,169 -0,242 4,471 4,966 4,399 0,566 2,015 1,875 2,063 -0,188 2,952 3,712 2,954 0,758 3,223 3,279 3,211 0,067 4,050 3,732 3,999 -0,266 2,745 2,301 2,757 -0,456 3,015 3,041 3,014 0,027 2,015 2,477 2,063 0,414 3,609 3,857 3,579 0,279 3,670 3,973 3,637 0,336 3,389	2,666	3,785	2,681	1,104
2,937 3,820 2,939 0,881 2,974 2,591 2,975 -0,384 2,657 2,158 2,673 -0,515 2,393 2,401 2,422 -0,021 3,690 3,354 3,656 -0,302 3,379 3,403 3,360 0,043 4,229 3,927 4,169 -0,242 4,471 4,966 4,399 0,566 2,015 1,875 2,063 -0,188 2,952 3,712 2,954 0,758 3,223 3,279 3,211 0,067 4,050 3,732 3,999 -0,266 2,745 2,301 2,757 -0,456 3,015 3,041 3,014 0,027 2,015 2,477 2,063 0,414 3,609 3,857 3,579 0,279 3,670 3,973 3,637 0,336 3,389 3,875 3,370 0,505 2,546	3,178	1,653	3,169	-1,516
2,974 2,591 2,975 -0,384 2,657 2,158 2,673 -0,515 2,393 2,401 2,422 -0,021 3,690 3,354 3,656 -0,302 3,379 3,403 3,360 0,043 4,229 3,927 4,169 -0,242 4,471 4,966 4,399 0,566 2,015 1,875 2,063 -0,188 2,952 3,712 2,954 0,758 3,223 3,279 3,211 0,067 4,050 3,732 3,999 -0,266 2,745 2,301 2,757 -0,456 3,015 3,041 3,014 0,027 2,015 2,477 2,063 0,414 3,609 3,857 3,579 0,279 3,670 3,973 3,637 0,336 3,389 3,875 3,370 0,505 2,546 2,708 2,568 0,140 2,165	3,337	2,799	3,320	-0,521
2,657 2,158 2,673 -0,515 2,393 2,401 2,422 -0,021 3,690 3,354 3,656 -0,302 3,379 3,403 3,360 0,043 4,229 3,927 4,169 -0,242 4,471 4,966 4,399 0,566 2,015 1,875 2,063 -0,188 2,952 3,712 2,954 0,758 3,223 3,279 3,211 0,067 4,050 3,732 3,999 -0,266 2,745 2,301 2,757 -0,456 3,015 3,041 3,014 0,027 2,015 2,477 2,063 0,414 3,609 3,857 3,579 0,279 3,670 3,973 3,637 0,336 3,389 3,875 3,370 0,505 2,546 2,708 2,568 0,140 2,165 2,863 2,206 0,658	2,937	3,820	2,939	0,881
2,657 2,158 2,673 -0,515 2,393 2,401 2,422 -0,021 3,690 3,354 3,656 -0,302 3,379 3,403 3,360 0,043 4,229 3,927 4,169 -0,242 4,471 4,966 4,399 0,566 2,015 1,875 2,063 -0,188 2,952 3,712 2,954 0,758 3,223 3,279 3,211 0,067 4,050 3,732 3,999 -0,266 2,745 2,301 2,757 -0,456 3,015 3,041 3,014 0,027 2,015 2,477 2,063 0,414 3,609 3,857 3,579 0,279 3,670 3,973 3,637 0,336 3,389 3,875 3,370 0,505 2,546 2,708 2,568 0,140 2,165 2,863 2,206 0,658	2,974	2,591	2,975	-0,384
3,690 3,354 3,656 -0,302 3,379 3,403 3,360 0,043 4,229 3,927 4,169 -0,242 4,471 4,966 4,399 0,566 2,015 1,875 2,063 -0,188 2,952 3,712 2,954 0,758 3,223 3,279 3,211 0,067 4,050 3,732 3,999 -0,266 2,745 2,301 2,757 -0,456 3,015 3,041 3,014 0,027 2,015 2,477 2,063 0,414 3,609 3,857 3,579 0,279 3,670 3,973 3,637 0,336 3,389 3,875 3,370 0,505 2,546 2,708 2,568 0,140 2,165 2,863 2,206 0,658	2,657	2,158		-0,515
3,379 3,403 3,360 0,043 4,229 3,927 4,169 -0,242 4,471 4,966 4,399 0,566 2,015 1,875 2,063 -0,188 2,952 3,712 2,954 0,758 3,223 3,279 3,211 0,067 4,050 3,732 3,999 -0,266 2,745 2,301 2,757 -0,456 3,015 3,041 3,014 0,027 2,015 2,477 2,063 0,414 3,609 3,857 3,579 0,279 3,670 3,973 3,637 0,336 3,389 3,875 3,370 0,505 2,546 2,708 2,568 0,140 2,165 2,863 2,206 0,658	2,393	2,401	2,422	-0,021
4,229 3,927 4,169 -0,242 4,471 4,966 4,399 0,566 2,015 1,875 2,063 -0,188 2,952 3,712 2,954 0,758 3,223 3,279 3,211 0,067 4,050 3,732 3,999 -0,266 2,745 2,301 2,757 -0,456 3,015 3,041 3,014 0,027 2,015 2,477 2,063 0,414 3,609 3,857 3,579 0,279 3,670 3,973 3,637 0,336 3,389 3,875 3,370 0,505 2,546 2,708 2,568 0,140 2,165 2,863 2,206 0,658	3,690	3,354	3,656	-0,302
4,471 4,966 4,399 0,566 2,015 1,875 2,063 -0,188 2,952 3,712 2,954 0,758 3,223 3,279 3,211 0,067 4,050 3,732 3,999 -0,266 2,745 2,301 2,757 -0,456 3,015 3,041 3,014 0,027 2,015 2,477 2,063 0,414 3,609 3,857 3,579 0,279 3,670 3,973 3,637 0,336 3,389 3,875 3,370 0,505 2,546 2,708 2,568 0,140 2,165 2,863 2,206 0,658	3,379	3,403	3,360	0,043
2,015 1,875 2,063 -0,188 2,952 3,712 2,954 0,758 3,223 3,279 3,211 0,067 4,050 3,732 3,999 -0,266 2,745 2,301 2,757 -0,456 3,015 3,041 3,014 0,027 2,015 2,477 2,063 0,414 3,609 3,857 3,579 0,279 3,670 3,973 3,637 0,336 3,389 3,875 3,370 0,505 2,546 2,708 2,568 0,140 2,165 2,863 2,206 0,658	4,229	3,927	4,169	-0,242
2,952 3,712 2,954 0,758 3,223 3,279 3,211 0,067 4,050 3,732 3,999 -0,266 2,745 2,301 2,757 -0,456 3,015 3,041 3,014 0,027 2,015 2,477 2,063 0,414 3,609 3,857 3,579 0,279 3,670 3,973 3,637 0,336 3,389 3,875 3,370 0,505 2,546 2,708 2,568 0,140 2,165 2,863 2,206 0,658	4,471	4,966	4,399	0,566
3,223 3,279 3,211 0,067 4,050 3,732 3,999 -0,266 2,745 2,301 2,757 -0,456 3,015 3,041 3,014 0,027 2,015 2,477 2,063 0,414 3,609 3,857 3,579 0,279 3,670 3,973 3,637 0,336 3,389 3,875 3,370 0,505 2,546 2,708 2,568 0,140 2,165 2,863 2,206 0,658	2,015	1,875	2,063	-0,188
4,050 3,732 3,999 -0,266 2,745 2,301 2,757 -0,456 3,015 3,041 3,014 0,027 2,015 2,477 2,063 0,414 3,609 3,857 3,579 0,279 3,670 3,973 3,637 0,336 3,389 3,875 3,370 0,505 2,546 2,708 2,568 0,140 2,165 2,863 2,206 0,658	2,952		2,954	0,758
4,050 3,732 3,999 -0,266 2,745 2,301 2,757 -0,456 3,015 3,041 3,014 0,027 2,015 2,477 2,063 0,414 3,609 3,857 3,579 0,279 3,670 3,973 3,637 0,336 3,389 3,875 3,370 0,505 2,546 2,708 2,568 0,140 2,165 2,863 2,206 0,658	3,223	3,279	3,211	0,067
3,015 3,041 3,014 0,027 2,015 2,477 2,063 0,414 3,609 3,857 3,579 0,279 3,670 3,973 3,637 0,336 3,389 3,875 3,370 0,505 2,546 2,708 2,568 0,140 2,165 2,863 2,206 0,658	4,050	3,732	3,999	-0,266
2,015 2,477 2,063 0,414 3,609 3,857 3,579 0,279 3,670 3,973 3,637 0,336 3,389 3,875 3,370 0,505 2,546 2,708 2,568 0,140 2,165 2,863 2,206 0,658	2,745	2,301	2,757	-0,456
3,609 3,857 3,579 0,279 3,670 3,973 3,637 0,336 3,389 3,875 3,370 0,505 2,546 2,708 2,568 0,140 2,165 2,863 2,206 0,658	3,015	3,041	3,014	0,027
3,670 3,973 3,637 0,336 3,389 3,875 3,370 0,505 2,546 2,708 2,568 0,140 2,165 2,863 2,206 0,658	2,015	2,477	2,063	0,414
3,389 3,875 3,370 0,505 2,546 2,708 2,568 0,140 2,165 2,863 2,206 0,658	3,609	3,857	3,579	0,279
2,546 2,708 2,568 0,140 2,165 2,863 2,206 0,658	3,670	3,973	3,637	0,336
2,165 2,863 2,206 0,658	3,389	3,875	3,370	0,505
	2,546	2,708	2,568	0,140
4.054 2.075 4.007 4.400	2,165	2,863	2,206	0,658
4,354 2,8/5 4,28/ -1,412	4,354	2,875	4,287	-1,412
4,744 4,531 4,659 -0,127	4,744	4,531	4,659	-0,127

Institut Scientifique d'Hygiène et d'Analyse 44/60

ANNEXE 5

LINEARITE

EVALUATION DE LA LINEARITE (ECHANTILLONS DOPES A 3 NIVEAUX DE CONCENTRATION)

✓ Eau douce superficielle

		Résultats bi	ruts / 100 ml	00 ml Résultats en LOG Exa		Exactitud	itude relative	
Niveaux (j)	Répétition (k)	NF EN 7899-1	XplOrer64 [™]	NF EN 7899-1 (x)	XplOrer64 [™] (y)	Différence (d)	Moyenne des différences	
Environ 5.10 ¹	répétion 1	3,0E+01	5,0E+01	1,48	1,70	0,22	0,11	
ufc / 100 ml	répétion 2	4,5E+01	4,4E+01	1,65	1,64	-0,01	0,11	
Environ 5.10 ²	répétion 1	6,5E+02	5,3E+02	2,82	2,73	-0,09	-0.19	
ufc / 100 ml	répétion 2	7,2E+02	3,7E+02	2,86	2,57	-0,29	-0,19	
Environ 5.10 ³	répétion 1	5,7E+03	5,9E+03	3,76	3,77	0,01	0.08	
ufc / 100 ml	répétion 2	5,0E+03	7,1E+03	3,70	3,85	0,15	0,08	

avec $d_{ik} = y_{ik} - x_{ik}$

Caractéristiques physico-chimiques de l'eau douce superficielle utilisée (base canoë-kayak du canal de la Deûle, Lille) :

conductivité: 1030 μS/cm
turbidité: 1,4 NFU
MEST: 1,6 mg/l

✓ Eau de mer

		Résultats b	ruts / 100 ml	00 ml Résultats en LOG Exa		Exactitud	ctitude relative	
Niveaux (j)	Répétition (k)	NF EN 7899-1	XplOrer64 [™]	NF EN 7899-1 (x)	XplOrer64 [™] (y)	Différence (d)	Moyenne des différences	
Environ 5.10 ¹	répétion 1	4,6E+01	3,2E+01	1,66	1,51	-0,16	-0,16	
ufc / 100 ml	répétion 2	4,6E+01	<1	1,66			-0,16	
Environ 5.10 ²	répétion 1	6,6E+02	1,3E+03	2,82	3,10	0,28	0,28	
ufc / 100 ml	répétion 2	3,9E+02	7,6E+02	2,59	2,88	0,29	0,26	
Environ 5.10 ³	répétion 1	5,0E+03	3,9E+03	3,70	3,59	-0,11	-0,21	
ufc / 100 ml	répétion 2	6,6E+03	3,3E+03	3,82	3,52	-0,30		

avec $d_{ik} = y_{ik} - x_{ik}$

Caractéristiques physico-chimiques de l'eau de mer utilisée (littoral, Gravelines) :

conductivité : 49000 μS/cm
turbidité : 0,92 NFU
MEST : 13,2 mg/l

Remarque:

Le nombre de données proposées est conforme au référentiel en vigueur mais cependant insuffisant pour exploiter les résultats par exemple selon NF EN ISO 16140 « Protocole pour la validation des méthodes alternatives en microbiologie des aliments » (5 niveaux et 2 répétitions par niveau requis au minimum) ou encore selon XP T 90-210 « Protocole d'évaluation d'une méthode alternative d'analyse physico-chimique quantitative par rapport à une méthode de référence » (5 niveaux et 5 répétitions par niveau requis au minimum). C'est pourquoi aucune exploitation statistique n'est proposée pour cette partie, le but de ces essais sur échantillons dopés étant avant tout d'avoir une aperçu descriptif de la relation entre les 2 méthodes.

Résultats détaillés

Domaine d'application : eaux résiduaires

Version logiciel XplOrer64™ Manager: V3.0 Souche utilisée: *Enterococcus faecalis* (Eau de STEP, Solesmes 2011, A1) Matrice utilisée: Effluent de station (Douvrin, MES: 4 mg/L)

Protocole général pour des échantillons filtrables (filtration de 100 ml), protocole validé en 2009 sur eaux de baignade

			NF EN ISO 7899-1	7899-1		Méthode alt	Méthode alternative XpIOrer64 CheckN'Safe Enterococci	34 CheckN'Safe I	Enterococci
Taux visé	Taux réel	Résult	Résultat NPP	Enterococ	Enterococci / 100 mL	R1	1	E	R2
		R1	R2	R1	R2	DT (heures)	Réponse (b/100 mL)	DT (heures)	Réponse (b/100 mL)
2.00E+02	2.25E+02	2/1/0/0/0/0	3/0/0/0/0	1.80E+02	1.85E+02	6.67	9.96E+04	6.43	1.46E+05
2.00E+04	1.89E+04	16/14/5/1/0/0	16/14/4/0/0	2.56E+04	2.20E+04	5.02	1.41E+06	4.88	1.76E+06
2.00E+06	1.95E+06	16/16/16/15/2/1	16/16/16/16/9/1	2.46E+06	8.12E+06	3.07	3.21E+07	2.67	6.10E+07

Protocole spécifique 1 pour des échantillons filtrables (filtration de 10 mL)

Taux visé Taux réel (UFC/100 mL) -		NF EN ISO 7899-1	7899-1		Méthode al	Méthode alternative XpIOrer64 CheckN'Safe <i>Enterococci</i>	54 CheckN'Safe £	nterococci
	Résult	Résultat NPP	Enterococci / 100 mL	<i>ɔi /</i> 100 mL	Œ.	R1	2	R2
	R1	R2	R1	R2	DT (heures)	Réponse (b/100 mL)	DT (heures)	Réponse (b/100 mL)
2.00E+02 2.25E+02	2/1/0/0/0/0	0/0/0/0/0/8	1.80E+02	1.85E+02	8.19	8.70E+03	8.50	5.29E+03
2.00E+04 1.89E+04	16/14/5/1/0/0	16/14/4/0/0	2.56E+04	2.20E+04	5.98	3.01E+05	5.59	5.63E+05
2.00E+06 1.95E+06	16/16/16/15/2/1	16/16/16/16/9/1	2.46E+06	8.12E+06	3.95	7.82E+06	3.52	1.56E+07

Protocole spécifique 2 pour des échantillons non filtrables (ensemencement direct de 1 mL)

			NF EN ISO 7899-1	7899-1		Méthode al	Méthode alternative XpIOrer64 CheckN'Safe Enterococci	64 CheckN'Safe &	Enterococci
Taux visé	Taux réel	Résult	Résultat NPP	Enterococ	Enterococci / 100 mL	ız.	11	x	R2
(21 (2) (2) (1)		R1	R2	R1	R2	DT (heures)	Réponse (b/100 mL)	DT (heures)	Réponse (b/100 mL)
2.00E+02	2.25E+02	2/1/0/0/0/0	0/0/0/0/0/8	1.80E+02	1.85E+02	8.62	4.36E+03	9.27	1.54E+03
2.00E+04	1.89E+04	16/14/5/1/0/0	16/14/4/0/0	2.56E+04	2.20E+04	6.49	1.33E+05	6.58	1.15E+05
2.00E+06	1.95E+06	16/16/16/15/2/1	16/16/16/16/9/1	2.46E+06	8.12E+06	4.28	4.61E+06	4.31	4.39E+06
2.00E+08	1.91E+08	16/16/16/16/16	6/16/16/16/16 16/16/16/15	3.50E+08	3.46E+08	4.46	3.45E+06	1.98	1.84E+08
MES . tours do mot	AAES . + constant of society	ç							

MES : taux de matières en suspension DT : temp de détection b : bactéries R1, R2 : réplicats

Synthèse des résultats [log(bactéries/100 mL)] selon le logiciel XplOrer64 Manager V3.0

Domaine d'application : eaux usées

Protocole général (Filtration 100 mL)

XplOrer64 CheckN'Safe Enterococcus	R2	(b / 100 mL)	5.16	6.25	7.79
XplOrer64 CheckN'	R1	(b / 100 mL)	5.00	6.15	7.51
0 7899-1	R2	(b / 100 mL)	2.27	4.34	6.91
NF EN ISO 7899-1	R1	(b / 100 mL)	2.26	4.41	6:39
Taux réel	(LIEC/100 ml.)	(=)	2.35	4.28	6.29

Protocole spécifique 1 (Filtration 10 mL)

Taux réel	NF EN ISO 7899-1	0 7899-1	XpIOrer64 CheckN'	XplOrer64 CheckN'Safe Enterococcus
(UFC/100 ml.)	R1	R2	R1	R2
(=	(b / 100 mL)	(b / 100 mL)	(b / 100 mL)	(b / 100 mL)
2.35	2.26	2.27	3.94	3.72
4.28	4.41	4.34	5.48	5.75
6.29	6.39	6.91	6.89	7.19

Protocole spécifique 2 (ensemencement direct de 1 mL)

Taux réel	NF EN IS	NF EN ISO 7899-1	XplOrer64 CheckN'	XpIOrer64 CheckN'Safe Enterococcus
(UFC/100 mL)	R1 (b / 100 mL)	R2 (b / 100 mL)	R1 (b / 100 mL)	R2 (b/100 ml)
2.35	2.26	2.27	3.64	3.19
4.28	4.41	4.34	5.12	5.06
6.29	6.39	6.91	99.9	6.64
8.28	8.54	8.54	6.54	8.26

b : bactéries R1, R2 : réplicats

Rapport de synthèse - v1 Linéarité - Entérocoques - Eau douce - Données en log

Niveau
1
2
3

	Méthode de	e référence	
Rep.1	Rep.2	M	SD
1,477	1,653	1,6	0,125
2,813	2,857	2,8	0,031
3,756	3,699	3,7	0,040

> MEDwx = 0,040 SDwx = 0,055 rob. SDwx = 0,060

	Méthode a	alternative	•
Rep.1	Rep.2	M	SD
1,699	1,643	1,7	0,039
2,724	2,568	2,6	0,110
3,771	3,851	3,8	0,057

My = 2,710 MEDy = 2,646 SDby = 1,071

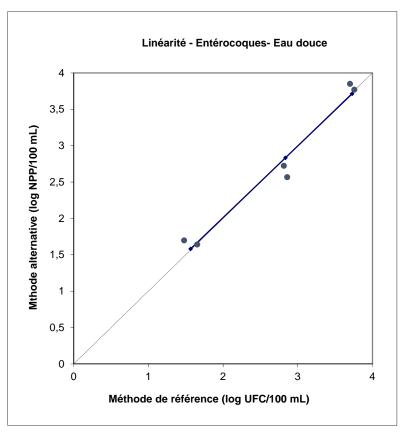
> MEDwy = 0,057 SDwy = 0,053 rob. SDwy = 0,084

Choix méthode GMFR

R = 0,968 rob.R = 1,413 Res.SEM = 0,230 Res.SD = 0,325

Sx = 0,974Sy = 0,960

Est y	Déviation
1,582	0,090
2,834	-0,187
3.713	0.098


r = 0,989 b = 0,986a = 0,039

Sb = 0,167 p(t;b=1) = 0,936 t(b) = 0,085**Sa** = 0,471 p(t;a=0) = 0,939 t(a) = 2,043

<u>Linéarité</u>

F = 146,193 p(F) = 0,001rob.F = 56,327 rob.p(F) = 0,005

146,19291

Niveau
1
2
3
4
5

	Méthode de	e référence	
Rep.1	Rep.2	M	SD
1,477	1,653	1,6	0,125
2,813	2,857	2,8	0,031
3,756	3,699	3,7	0,040
2,820	2,591	2,7	0,162
3,699	3,820	3,8	0,085

q = 5 n = 2 N = qn = 10

Mx = 2,918 MEDx = 2,835 SDbx = 0,901

> MEDwx = 0,085 SDwx = 0,072 rob. SDwx = 0,126

Méthode alternative				
Rep.1	Rep.2	M	SD	
1,699	1,643	1,7	0,039	
2,724	2,568	2,6	0,110	
3,771	3,851	3,8	0,057	
3,114	2,881	3,0	0,165	
3,591	3,519	3,6	0,051	

My = 2,936 MEDy = 2,997 SDby = 0,842

> MEDwy = 0,057 SDwy = 0,068 rob. SDwy = 0,084

Linéarité - Entérocoques - Eau de baignade

Choix méthode GMFR

R = 0,953 rob.R = 0,667 Res.SEM = 0,140 Res.SD = 0,198

Sx = 0.853Sy = 0.797

r = 0,973 b = 0,935a = 0,207

Est y	Déviation
1,671	0,000
2,858	-0,212
3,693	0,119
2,737	0,261
3 722	-0.167

0,452 t (b) = Sb = 0,082 p(t;b=1) = 0,427 t (a) = 0,791 Sa = 0,248 p(t;a=0) = 3,195

<u>Linéarité</u>

F = 20,761 **rob.F** = 13,092

p(F) = 0,003 **rob.p(F)** = 0,008 (100 Mbl/dollar)

4
3,5
3,5
4
0,5
0,5
0
0
1
2
3
4
Méthode de référence (log UFC/100 mL)

3

BIO-RAD - Xplorer64 / CheckN' Safe Enterococci Rapport de synthèse - v1 Linéarité - Entérocoques - Eau de rejet et résiduaires 100 mL - Données en log

Niveau
1
2
3

q =

n = N = qn =

Méthode de référence			
Rep.1	Rep.2	M	SD
2,255	2,267	2,3	0,008
4,408	4,342	4,4	0,047
6,391	6,910	6,7	0,367

4,429 Mx =MEDx =4,375 SDbx = 2,195

> MEDwx =0,047 SDwx =0,151 rob. SDwx = 0,069

Méthode alternative				
Rep.1	Rep.2	M	SD	
4,998	5,164	5,1	0,117	
6,149	6,246	6,2	0,068	
7,507	7,785	7,6	0.197	

My = 6,308 MEDy = 6,197 SDby = 1,286

> MEDwy = 0,117 SDwy = 0,098 rob. SDwy = 0,174

Choix méthode

OLS1; x=réf

R =0,647 rob.R = 2,524

Res.SD = 0,138

Sx =1,970 Sy = 1,155

M. (réf)	Alt.	Est. Y	Déviation
2,261	4,998	5,037	-0,039
4,375	6,149	6,277	-0,128
6,650	7,507	7,611	-0,104
2,261	5,164	5,037	0,127
4,375	6,246	6,277	-0,031
6,650	7,785	7,611	0,175

0,999 r =**b** = 0,586 3,712 a =

p(t;b=1) =Sb =6,380 0,951 t(b) =0,065

p(t;a=0) =0,000 Sa = 0,150

t(a) =18,096

<u>Linéarité</u>

F = 4,988 rob.F = 0,484

p(F) =0,112 rob.p(F) =0,537

4,98836565

Linéarité - Entérocoques - Eaux de rejet et résiduaires 100 mL 9 8 Mthode alternative (log NPP/100 mL) 7 6 4 3 2 0 2 4 6 8 Méthode de référence (log UFC/100 mL)

3

BIO-RAD - Xplorer64 / CheckN' Safe Enterococci Rapport de synthèse - v1 Linéarité - Entérocoques - Eau de rejet et résiduaires 10 mL - Données en log

Niveau
1
2
3

q =

n = N = qn =

Méthode de référence				
Rep.1	Rep.2	M	SD	
2,255	2,267	2,3	0,008	
4,408	4,342	4,4	0,047	
6,391	6,910	6,7	0,367	

4,429 Mx =MEDx =4,375 SDbx = 2,195

> MEDwx =0,047 SDwx =0,151 rob. SDwx = 0,069

Méthode alternative			
Rep.1	Rep.2	M	SD
3,940	3,723	3,8	0,153
5,479	5,751	5,6	0,192
6,893	7,193	7,0	0,212

My = 5,496 MEDy = 5,615 SDby = 1,609

> MEDwy = 0,192 SDwy = 0,132 rob. SDwy = 0,285

Choix méthode

OLS1; x=réf

0,878 R =rob.R = 4,132

Res.SD = 0,212

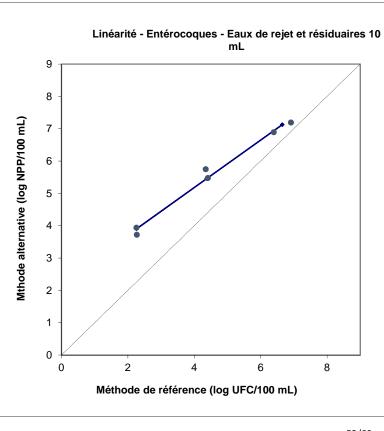
Sx =1,970 Sy = 1,447

M. (réf)	Alt.	Est. Y	Déviation
2,261	3,940	3,905	0,035
4,375	5,479	5,457	0,022
6,650	6,893	7,127	-0,234
2,261	3,723	3,905	-0,181
4,375	5,751	5,457	0,293
6,650	7,193	7,127	0,066

0,996 r =**b** = 0,734

2,245 a =

Sb =4,156 p(t;a=0) =Sa = 0,230


p(t;b=1) =0,952 0,001 t(b) =0,064 t(a) =5,410

<u>Linéarité</u>

F = 7,247 rob.F = 0,788

p(F) =0,074 rob.p(F) =0,440

7,24687148

-	
Niveau	
1	
2	
3	
4	

Méthode de référence				
Rep.1	Rep.2	M	SD	
2,255	2,267	2,3	0,008	
4,408	4,342	4,4	0,047	
6,391	6,910	6,7	0,367	
8,544	8,539	8,5	0,004	

> MEDwx = 0.027 SDwx = 0.131rob. SDwx = 0.041

	Méthode a	alternative	
Rep.1	Rep.2	M	SD
3,639	3,188	3,4	0,320
5,124	5,061	5,1	0,045
6,664	6,642	6,7	0,015
6,538	8,265	7,4	1,221

My = 5,640 MEDy = 5,873 SDby = 1,769

> MEDwy = 0,182 SDwy = 0,447 rob. SDwy = 0,270

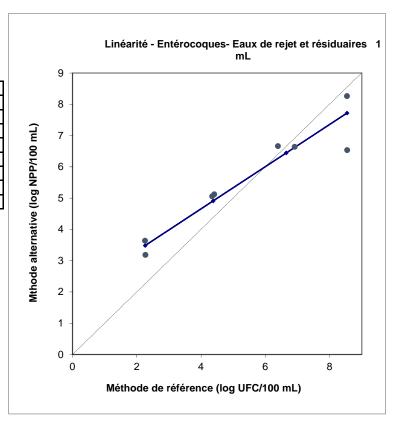
Choix méthode OLS1

R = 3,416 **rob.R** = 6,628

Res.SD = 0,572

Sx = 2,529 Sy = 1,706 r = 0,991b = 0,674

1,960


a =

M. (réf)	Alt.	Est. Y	Déviation
2,261	3,639	3,485	0,155
4,375	5,124	4,910	0,213
6,650	6,664	6,445	0,219
8,542	6,538	7,720	-1,182
2,261	3,188	3,485	-0,297
4,375	5,061	4,910	0,150
6,650	6,642	6,445	0,198
8,542	8,265	7,720	0,545

Sb = 1,672
$$p(t;b=1) = 0,852$$
 $t(b) = 0,195$
Sa = 0,508 $p(t;a=0) = 0,008$ $t(a) = 1,888$

<u>Linéarité</u>

F = 2,919rob.F = 11,456 p(F) = 0.165rob.p(F) = 0.022

ANNEXE 6

DETERMINATION DES LIMITES DE DETECTION ET DE QUANTIFICATION

RESULTATS OBTENUS POUR LA DETERMINATION DES LIMITES DE DETECTION (LOD) ET DE QUANTIFICATION (LOQ)

Domaine d'application : Eaux usées

<u>Souche utilisée</u>: *E. faecalis* (Effluent de station, Solesme) Matrice utilisée : Effluent de station (Douvrin, MES : 4 mg/L)

Protocole général : filtration de 100 mL

Niveau			4			Réplica	ts		0	
d'inoculation (Germes/100mL)	IC* (Germes/100mL)	DT	Réponse dans 100 mL	Détection	DT	Réponse dans 100 mL	Détection	DT	Réponse dans 100 mL	Détection
0,5	0,4 - 0,7	11,49	44	+	/	<seuil< th=""><th>-</th><th>/</th><th><seuil< th=""><th>-</th></seuil<></th></seuil<>	-	/	<seuil< th=""><th>-</th></seuil<>	-
1,1	0,9 - 1,3	12,47	9	+	10,07	426	+	10,00	477	+
2,1	1,7 – 2,6	11,54	40	+	9,50	1063	+	9,80	657	+

						Réplica	ts				
Niveau	IC*		4			5			6		
d'inoculation (Germes/100mL)	(Germes/100mL)	DT	Réponse dans 100 mL	Détection	DT	Réponse dans 100 mL	Détection	DT	Réponse dans 100 mL	Détection	Taux
0,5	0,4 - 0,7	9,27	1537	+	/	<seuil< td=""><td>-</td><td>9,73</td><td>735</td><td>+</td><td>3/6</td></seuil<>	-	9,73	735	+	3/6
1,1	0,9 - 1,3	11,60	37	+	10,36	268	+	11,62	35	+	6/6
2,1	1,7 – 2,6	9,17	1805	+	13,36	2	+	9,73	735	+	6/6

DT : Temps de détection / : non détecté

+ : positif

Protocole spécifique 1 : filtration de 10 mL

						Réplica	ts			
Niveau	IC*		1			2			3	
d'inoculation (Germes/100mL)	(Germes/100mL)	DT	Réponse dans 100 mL	Détection	DT	Réponse dans 100 mL	Détection	DT	Réponse dans 100 mL	Détection
1,0	0,9 - 1,3	10,59	180	+	9,63	870	+	/	<seuil< td=""><td>-</td></seuil<>	-
2,1	1,7 – 2,5	/	<seuil< td=""><td>-</td><td>10,21</td><td>340</td><td>+</td><td>11,55</td><td>39</td><td>+</td></seuil<>	-	10,21	340	+	11,55	39	+
5,2	4,3 - 6,3	10,03	450	+	9,98	490	+	12,88	4,7	+
10,4	8.5 – 12.7	9.61	890	+	11.11	80	+	9.47	1100	+

- : négatif

						Réplica	ts				
Niveau	IC*		4			5			6		
d'inoculation (Germes/100mL)	(Germes/100mL)	DT	Réponse dans 100 mL	Détection	DT	Réponse dans 100 mL	Détection	DT	Réponse dans 100 mL	Détection	Taux
1,0	0,9 - 1,3	10,03	460	+	/	<seuil< td=""><td>-</td><td>/</td><td><seuil< td=""><td>-</td><td>3/6</td></seuil<></td></seuil<>	-	/	<seuil< td=""><td>-</td><td>3/6</td></seuil<>	-	3/6
2,1	1,7 – 2,5	12,74	5,9	+	12,18	15	+	/	<seuil< td=""><td>-</td><td>4/6</td></seuil<>	-	4/6
5,2	4,3 - 6,3	/	<seuil< td=""><td>-</td><td>10,38</td><td>260</td><td>+</td><td>9,72</td><td>750</td><td>+</td><td>5/6</td></seuil<>	-	10,38	260	+	9,72	750	+	5/6
10,4	8,5 – 12,7	10,51	210	+	10,46	230	+	10,87	112	+	6/6

DT : Temps de détection / : non détecté
* IC : Indice de confiance (loi de Poisson)

^{*} IC : Indice de confiance (loi de Poisson)

^{-:} négatif + : positif

RESULTATS OBTENUS POUR LA DETERMINATION DES LIMITES DE DETECTION (LOD) ET DE QUANTIFICATION (LOQ)

Domaine d'application : Eaux usées

Souche utilisée : E. faecalis (Effluent de station, Solesme) Matrice utilisée : Effluent de station (Douvrin, MES : 4 mg/L)

Protocole spécifique : ensemencement direct de 1 mL

						Réplica	ts			
Niveau	IC*		1			2			3	
d'inoculation (Germes/100mL)	(Germes/100mL)	DT	Réponse dans 100 mL	Détection	DT	Réponse dans 100 mL	Détection	DT	Réponse dans 100 mL	Détection
0,5	0,4-0,6	/	<seuil< td=""><td>-</td><td>/</td><td><seuil< td=""><td>-</td><td>/</td><td><seuil< td=""><td>-</td></seuil<></td></seuil<></td></seuil<>	-	/	<seuil< td=""><td>-</td><td>/</td><td><seuil< td=""><td>-</td></seuil<></td></seuil<>	-	/	<seuil< td=""><td>-</td></seuil<>	-
0,7	0,6-0,8	13,45	1,9	+	9,79	670	+	/	<seuil< td=""><td>-</td></seuil<>	-
1,4	1,2 – 1,6	10,76	140	+	9,17	1800	+	9,65	830	+
2,9	2,5 - 3,3	9,51	1100	+	9,60	910	+	9,17	1800	+

						Réplica	ts				
Niveau	IC*		4			5			6		
d'inoculation	(Germes/100mL)		Réponse	Détection		Réponse	Détection		Réponse	Détection	Taux
(Germes/100mL)	(Germes/ToomL)	DT	dans		DT	dans		DT	dans		
			100 mL			100 mL			100 mL		
0,5	0,4-0,6	/	<seuil< th=""><th>-</th><th>/</th><th><seuil< th=""><th>-</th><th>/</th><th><seuil< th=""><th>-</th><th>0/6</th></seuil<></th></seuil<></th></seuil<>	-	/	<seuil< th=""><th>-</th><th>/</th><th><seuil< th=""><th>-</th><th>0/6</th></seuil<></th></seuil<>	-	/	<seuil< th=""><th>-</th><th>0/6</th></seuil<>	-	0/6
0,7	0,6-0,8	10,11	400	+	/	<seuil< td=""><td>-</td><td>/</td><td><seuil< td=""><td>-</td><td>3/6</td></seuil<></td></seuil<>	-	/	<seuil< td=""><td>-</td><td>3/6</td></seuil<>	-	3/6
1,4	1,2 – 1,6	9,64	850	+	9,25	1600	+	9,73	740	+	6/6
2,9	2,5 - 3,3	9,37	1300	+	9,28	1500	+	9,58	930	+	6/6

- : négatif

DT : Temps de détection /: non détec * IC : Indice de confiance (loi de Poisson) / : non détecté

ANNEXE 7

SELECTIVITE (Inclusivité/Exclusivité)

Rappel des résultats de l'étude initiale selon XplOrer64 Software Version 3.0

Inclusivité (2009) V3.0

Souches cibles: Enterococci

٥٥٠٥٥٥٥٥	o qorro o	A selection C	Taux cible inoculum	ldX	Méthode alternative XplOrer 64™ CheckN'Safe Enterococci	rnative Safe Enterococci
Kererence	enconoc	a Ellico	sur PCA (UFC/100 mL)	DT (heures)	Résultat	Résultat final détection entérocogues
_	Enterococcus avium	Eau de puits - Lille (59)	2.5E+01	, , ,	ND	
2	Enterococcus durans	Eau de puits - Lille (59)	2.4E+01	12.50	8.6E+00	+
3	Enterococcus durans	Eau de surface - Etang du Parc Barbieux, Croix (59)	8.1E+01	9.70	7.7E+02	+
4	Enterococcus durans	Eau de mer - Plage sud, Oyes-Plage (62)	7.7E+01	8.73	3.7E+03	+
5	Enterococcus durans	Eau de mer - Plage de Wissant (62)	4.8E+01	8.72	3.7E+03	+
9	Enterococcus durans	Eau de mer - Plage du Chatelet, Tardinghen (62)	5.9E+01	9.00	2.4E+03	+
7	Enterococcus faecalis	Collection CCM 2541	2.6E+01	10.09	4.1E+02	+
80	Enterococcus faecalis	Eau de mer - Plage Sud, Audresselles (62)	7.7E+01	/	ND	
6	Enterococcus faecalis	Eau de mer - Plage des Dunes de la Slack, Ambleuteuse (62)	1.1E+02	10.07	4.3E+02	+
10	Enterococcus faecium	Collection RIVM WR63	1.7E+01	10.02	4.6E+02	+
11	Enterococcus faecium	Eau de surface - Port de plaisance, Fort-Philippe (59)	4.6E+01	11.83	2.5E+01	+
12	Enterococcus faecium	Eau de surface - Etang du Parc d'Immercourt, Athies (62)	5.9E+01	11.76	2.8E+01	+
13	Enterococcus faecium	Eau de surface - Rivière, Roeux (62)	4.5E+01	11.03	9.1E+01	+
14	Enterococcus faecium	Eau de surface - Lac de Waziers (59)	2.1E+01	10.26	3.1E+02	+
15	Enterococcus faecium	Eau de surface - Rivière, Lambres les Douai (59)	3.5E+01	12.33	1.1E+01	+
16	Enterococcus faecium	Eau de surface - Lac de Brunemont (59)	8.1E+01	11.50	4.3E+01	+
17	Enterococcus faecium	Eau de surface - Canal de la Sensée, Arleux (59)	4.2E+01	10.26	3.1E+02	+
18	Enterococcus faecium	Eau saumâtre - Estuaire de l'Aa, Gravelines (59)	5.2E+01	12.99	3.9E+00	+
19	Enterococcus faecium	Eau saumâtre - Canal de Bourbourg, Dunkerque (59)	5.2E+01	9.01	2.3E+03	+
20	Enterococcus faecium	Eau de mer - Plage Centrale, Dunkerque (59)	3.6E+01	69.6	7.8E+02	+
21	Enterococcus faecium	Eau de mer - Plage Centrale, Gravelines (59)	6.4E+01	8.28	7.5E+03	+
22	Enterococcus faecium	Eau de mer - Plage de Fort-Vert, Hemmes de Marck (62)	3.2E+01	10.32	2.9E+02	+
23	Enterococcus faecium		6.3E+01	9.25	1.6E+03	+
24	Enterococcus faecium	Eau de mer - Plage du Cap Gris -Nez (62)	4.6E+01	9.76	7.0E+02	+
25	Enterococcus gallinarum	Eau de surface - Douves, Gravelines (59)	5.3E+01	11.28	6.1E+01	+
26	Enterococcus gallinarum	Eau de surface - Lac du héron,Villeneuve d'Ascq (59)	5.0E+01	11.37	5.3E+01	+
27	Enterococcus gallinarum	Eau de surface - Rivière, Armentières (59)	3.3E+01	11.61	3.6E+01	+
28	Enterococcus gallinarum	Eau de surface - Etang Loisirparc, Aubigny-au-Bac (59)	4.8E+01	11.09	8.3E+01	+
29	Enterococcus gallinarum	Eau de mer - Plage du Cap Blanc-Nez (62)	2.0E+01	13.57	1.6E+00	+
30	Enterococcus hirae	Collection CCM 2423	1.2E+02	11.83	2.5E+01	+

b/100 mL : bactéries dans 100 mL - : test négatif

+ : test positif ND : Non détecté

Résultats de l'étude préliminaire initiale selon XplOrer64 Software Version 3.0

Exclusivité (2009) V3.0

Souches non cibles

		Soncues non cipies	on cibies				
			Taux cible	^	Méthode alternative XplOrer 64™ CheckN'Safe Enterococci	ernative 'Safe Enterococci	NF FN ISO 9308-3
Référence	Souche	Origine	sur PCA	TQ	Résultat	Résultat final	(UFC/100 ml)
			(UFC/100 mL)	(heures)	(b/100 mL)	détection entérocoques	
-	Aerococcus viridans	collection CIP 54.145T	4.4E+03	/	QN		/
2	Aerococcus viridans	Eau de réseau	3.4E+04	/	Q.		/
3	Lactococcus cremoris	Eau de réseau	2.6E+04	/	Q.		/
4	Lactococcus lactis lactis	collection CIP 70.56T	6.0E+04	/	<u>Q</u>		,
2	Micrococcus luteus	collection CIP 53.45	8.0E+04	/	<u>Q</u>		,
9	Micrococcus (Kocuria) varians	collection CIP 81.73T	8.0E+04	/	Q.		,
7	Pediococcus damnosus	collection CIP 102264T	1.8E+04	/	<u>Q</u>		,
8	Pediococcus (Tetragenococcus) halophilus	collection CIP 102263T	2.0E+04	/	<u>Q</u>		,
6	Pediococcus inopinatus	collection CIP 102406T	5.4E+04	/	Q.		,
10	Pediococcus pentosaceus	collection CIP 10260T	8.0E+04	/	Q.		,
1-	Planococcus citreus	collection CIP 81.74T	1.5E+05	/	QN		,
12	Staphylococcus aureus	collection CIP 53.154	1.2E+04	/	Q.		,
13	Staphylococcus capitis	Eau de piscine	3.4E+03	/	Q.		,
14	Staphylococcus chromogenes	Eau de piscine	2.5E+04	/	Q.		/
15	Staphylococcus epidermidis	collection CIP 68.21	2.4E+05	/	<u>Q</u>		/
16	Staphylococcus saprophyticus	Eau de réseau	1.9E+04	/	Q.		/
17	Staphylococcus saprophyticus	Eau de thermes	2.5E+04	/	Q.		/
18	Staphylococcus xylosus	Eau de réseau	2.3E+04	/	<u>Q</u>		/
19	Acinetobacter johnsonii	collection CIP 64.6T	3.1E+04	/	<u>Q</u>		,
20	Aeromonas hydrophila	Eau de forage	2.5E+05	/	Q.		/
21	Bacillus cereus	collection CIP 64.52	3.0E+05	/	Q.		/
22	Bacillus subtilis	collection CIP 52.62	2.5E+05	/	Q.		/
23	Corynebacterium propinquum	Eau de réseau	1.9E+03	/	Q.		/
24	Enterobacter cloacae	Eau de piscine	1.2E+04	/	Q.		/
25	Proteus mirabilis	Eau de rivière	8.8E+03	/	Q.		/
26	Proteus vulgaris	Eau de rivière	6.8E+03	/	Q.		/
27	Providencia stuartii	Eau de rivière	6.5E+03	/	Q		<15
			2.3E+03	/	QN		<16
28	Pseudomonas aeruginosa	Eau de thermes	4.6E+03	/	QN		/
29	Vibrio fluvialis	Eau de rivière	9.0E+03	/	Q		/
30	Vibrio parahaemolyticus	Eau de réseau	9.6E+04	/	ND		/

b/100 mL : bactéries dans 100 mL : test négatif + : test positif ND : Non détecté

ANNEXE 8

RESULTATS EN ENTEROCOQUES OBSERVES PAR LES PARTCIPANTS

Niveau bas (flacons A et B)

LE : laboratoire expert (seul les échantilons du colis 2 ont été analysés par méthode alternative)

	F	Résulta	ts brut	s en e	ntéroco								Résult	ats LOG	i			
	NF	EN IS	O 7899	-1		XplOre	er64 ⁽¹⁾			NF EN IS	SO 7899	-1		XplO	rer64		Moye	ennes
	A1	A2	B1	B2	A1	A2	B1	B2	A1	A2	B1	B2	A1	A2	B1	B2	NF	XplOrer
1	61	30	61	30	54	67	23	21	1,79	1,48	1,79	1,48	1,73	1,83	1,36	1,32	1,63	1,56
2	109	61	61	46	91	115	99	89	2,04	1,79	1,79	1,66	1,96	2,06	2,00	1,95	1,82	1,99
3	46	30	46	61	83	33	72	149	1,66	1,48	1,66	1,79	1,92	1,52	1,86	2,17	1,65	1,87
4	93	30	94	<15	34	49	49	48	1,97	1,48	1,97	-	1,53	1,69	1,69	1,68	1,81	1,65
5	94	46	94	61	91	114	277	162	1,97	1,66	1,97	1,79	1,96	2,06	2,44	2,21	1,85	2,17
6	15	30	46	30	19	21	37	43	1,18	1,48	1,66	1,48	1,28	1,32	1,57	1,63	1,45	1,45
7	61	77	15	110	338	162	281	179	1,79	1,89	1,18	2,04	2,53	2,21	2,45	2,25	1,72	2,36
8	61	44	77	45	66	59	37	82	1,79	1,64	1,89	1,65	1,82	1,77	1,57	1,91	1,74	1,77
9	61	61	110	46	25	83	114	34	1,79	1,79	2,04	1,66	1,40	1,92	2,06	1,53	1,82	1,73
10	61	94	61	110	<40	<40	<40	<40	1,79	1,97	1,79	2,04	-	-	-		1,90	-
11	<15	15	30	15	76	59	65	119	-	1,18	1,48	1,18	1,88	1,77	1,81	2,08	1,28	1,89
12	<15	<15	<15	<15	164	273	200	174	ı	-		-	2,21	2,44	2,30	2,24	-	2,30
LE	61	110	77	30	237	102	77	102	1,79	2,04	1,89	1,48	2,37	2,01	1,89	2,01	1,80	2,07

Niveau moyen (flacons C et D)

	_	عادات و	40 brit		ntáron		100		_				Dágulá	oto I OC				
					ntéroco								Result	ats LOG				
	NF	EN IS	O 7899	9-1		XplOre	er64 ⁽¹⁾			NF EN IS	SO 7899	-1		XplO	rer64		Moye	nnes
	C1	C2	D1	D2	C1	C2	D1	D2	C1	C2	D1	D2	C1	C2	D1	D2	NF	XplOrer
1	956	640	705	1 020	153	612	3 434	324	2,98	2,81	2,85	3,01	2,18	2,79	3,54	2,51	2,91	2,75
2	1 089	690	828	828	657	475	1 224	1 390	3,04	2,84	2,92	2,92	2,82	2,68	3,09	3,14	2,93	2,93
3	565	690	861	690	812	847	812	757	2,75	2,84	2,94	2,84	2,91	2,93	2,91	2,88	2,84	2,91
4	814	848	865	931	395	539	603	639	2,91	2,93	2,94	2,97	2,60	2,73	2,78	2,81	2,94	2,73
5	872	585	767	514	896	621	1 062	1 062	2,94	2,77	2,88	2,71	2,95	2,79	3,03	3,03	2,83	2,95
6	565	559	750	697	705	418	1 313	400	2,75	2,75	2,88	2,84	2,85	2,62	3,12	2,60	2,80	2,80
7	683	585	838	647	2 663	1 351	1 870	2 279	2,83	2,77	2,92	2,81	3,43	3,13	3,27	3,36	2,83	3,30
8	1 007	872	791	828	1 295	735	319	1 224	3,00	2,94	2,90	2,92	3,11	2,87	2,50	3,09	2,94	2,89
9	896	734	824	791	1 767	1 259	603	835	2,95	2,87	2,92	2,90	3,25	3,10	2,78	2,92	2,91	3,01
10	742	759	524	683	578	<40	20 978	<40	2,87	2,88	2,72	2,83	2,76	-	4,32		2,83	3,54
11	690	110	61	61	746	812	871	847	2,84	2,04	1,79	1,79	2,87	2,91	2,94	2,93	2,11	2,91
12	<15	<15	<15	<15	373	1 897	517	2 588	-	-	-	-	2,57	3,28	2,71	3,41	-	2,99
LE	612	683	509	600	657	725	621	695	2,79	2,83	2,71	2,78	2,82	2,86	2,79	2,84	2,78	2,83

Niveau haut (flacons E et F)

THY GOOD HOLD (HELDING LETT)																		
	Résultats bruts en entérocoques / 100 ml								Résultats LOG									
	NF EN ISO 7899-1				XplOrer64 (1)				NF EN ISO 7899-1				XplOrer64				Moyennes	
	E1	E2	F1	F2	E1	E2	F1	F2	E1	E2	F1	F2	E1	E2	F1	F2	NF	XplOrer
1	7 101	6 581	5 712	7 683	1 033	1 295	2 094	2 625	3,85	3,82	3,76	3,89	3,01	3,11	3,32	3,42	3,83	3,22
2	6 119	6 119	9 043	6 119	3 533	3 583	2 940	10 346	3,79	3,79	3,96	3,79	3,55	3,55	3,47	4,01	3,83	3,65
3	4 267	6 581	9 826	4 005	4 822	4 960	4 960	4 246	3,63	3,82	3,99	3,60	3,68	3,70	3,70	3,63	3,76	3,68
4	4 753	4 573	6 119	6 581	2 035	2 858	1 897	3 434	3,68	3,66	3,79	3,82	3,31	3,46	3,28	3,54	3,74	3,39
5	8 329	5 712	4 753	6 581	4 822	5 795	4 557	6 964	3,92	3,76	3,68	3,82	3,68	3,76	3,66	3,84	3,79	3,74
6	5 712	4 502	4 368	5 352	2 940	2 588	ра	8 609	3,76	3,65	3,64	3,73	3,47	3,41	-	3,93	3,69	3,61
7	4 573	7 101	7 101	5 712	7 909	11 917	9 504	14 120	3,66	3,85	3,85	3,76	3,90	4,08	3,98	4,15	3,78	4,03
8	5 918	5 712	4 902	8 329	5 102	3 483	7 688	10 346	3,77	3,76	3,69	3,92	3,71	3,54	3,89	4,01	3,78	3,79
9	5 035	7 101	9 043	6 581	4 557	5 961	4 069	13 156	3,70	3,85	3,96	3,82	3,66	3,78	3,61	4,12	3,83	3,79
10	6 581	5 352	5 306	5 352	6 046	4 367	274 941	3 738	3,82	3,73	3,72	3,73	3,78	3,64	5,44	3,57	3,75	4,11
11	75	7 700	30	2 200	5 031	6 308	2 154	5 476	1,88	3,89	1,48	3,34	3,70	3,80	3,33	3,74	2,65	3,64
12	<15	<15	<15	<15	3 634	16 036	5 175	7 265	-	-	-	-	3,56	4,21	3,71	3,86	-	3,84
LE	5 712	5 352	4 368	5 035	4493	4687	5323	5476	3,76	3,73	3,64	3,70	3,65	3,67	3,73	3,74	3,71	3,70

 $^{^{(1)}}$ Résultats recalculés à l'aide de la nouvelle équation de calibration fournie par le fabricant

Participants écartés de l'exploitation statistique :

 $n\mathfrak{G}: problème de logiciel ayant entra \hat{n} \acute{e} le reposi tionnement de cellules dans l'automate XplOrer64 et recalcul des résultats$

n°10 : résultats obtenus par méthode XplOrer64 aber rants

n°11 : résultats obtenus par méthode de référence a normaux (réplicats E et F)

n°12 : résultats obtenus par méthode de référence a normaux + analyse le 08/10

Temps de détection (DT) en h observés par les participants par la méthode Xplorer64

	Ni	veau b	as (A et	B)	Nive	eau mo	yen (C	et D)	Niveau haut (E et F)				
	A1	A2	B1	B2	C1	C2	D1	D2	E1	E2	F1	F2	
1	9,63	9,47	10,23	10,29	8,89	7,91	6,69	8,36	7,54	7,38	7,04	6,88	
2	9,26	9,09	9,20	9,27	7,86	8,09	7,42	7,33	6,67	6,66	6,80	5,91	
3	9,32	9,97	9,42	8,91	7,71	7,68	7,71	7,76	6,45	6,43	6,43	6,54	
4	9,95	9,70	9,70	9,71	8,22	8,00	7,92	7,88	7,06	6,82	7,11	6,69	
5	9,26	9,10	8,47	8,85	7,64	7,90	7,52	7,52	6,45	6,32	6,49	6,19	
6	10,36	10,29	9,90	9,79	7,81	8,18	7,37	8,21	6,80	6,89	pa	6,04	
7	8,33	8,85	8,46	8,78	6,87	7,35	7,12	6,98	6,10	5,81	5,97	5,69	
8	9,48	9,56	9,89	9,33	7,38	7,78	8,37	7,42	6,41	6,68	6,12	5,91	
9	10,16	9,32	9,10	9,95	7,16	7,40	7,92	7,69	6,49	6,30	6,57	5,74	
10	-			-	7,95		5,41		6,29	6,52	3,59	6,63	
11	9,39	9,57	9,50	9,07	7,77	7,71	7,66	7,68	6,42	6,26	7,02	6,36	
12	8,84	8,48	8,70	8,80	8,26	7,11	8,03	6,89	6,65	5,60	6,40	6,16	
LE	8,58	9,18	9,38	9,18	7,86	7,79	7,90	7,82	6,50	6,47	6,38	6,36	

pa : problème analytique (labo n% échantillon F1 : membrane déchirée)