

iQ-Check™ Legionella pneumophila for detection and quantification of Legionella pneumophila in all types of water

Summary report July 2023

BIO-RAD

3 boulevard Raymond Poincaré 92430 MARNES – LA - COQUETTE FRANCE

The report includes 41 pages, including 6 appendices. Reproduction of this report is only permitted in its full form.

Competencies of the laboratory are certified by COFRAC accreditation for the analysis marked with the symbol*

Foreword

Studied method:

iQ-Check™ Legionella pneumophila

Validation standard

Validation protocol for commercial methods of detection and quantification of Legionella and Legionella pneumophila by concentration and gene amplification by polymerase chain reaction (PCR) V3.0

Reference method*

- ❖ NF T90-471 (June 2015): Water quality- Detection and quantification of Legionella and/or Legionella pneumophila by concentration and genic amplification by real time polymerase chain reaction (qPCR)
- ❖ ISO/TS 12869 (April 2019): Water quality Detection and quantification of Legionella spp. and/or Legionella pneumophila by concentration and genic amplification by quantitative polymerase chain reaction (qPCR)
- ❖ Validation protocol for commercial methods of detection and quantification of Legionella and Legionella pneumophila by concentration and gene amplification by polymerase chain reaction (PCR) V3.0

Scope

All types of water

Certification body

AFNOR Certification (https://nf-validation.afnor.org/en/)

1 INTRODUCTION	5
2 REVIEW OF CHANGES IN THE ALTERNATIVE METHOD SINCE THE PR	EVIOUS
VALIDATION	5
2.1 HISTORY OF VALIDATION	5
2.2 REVIEW OF CHANGES IN THE ALTERNATIVE METHOD	7
2.3 REVIEW OF USER COMPLAINTS ABOUT THE METHOD	8
3 METHODS PROTOCOLS	8
3.1 PRINCIPLE OF ALTERNATIVE METHOD	8
3.2 REFERENCES OF PROTOCOL	9
3.3 RESTRICTIONS	9
3.4 REFERENCE METHOD	9
4 SUMMARY OF RESULTS	10
4.1 COMPARATIVE STUDY	10
4.1.1 FITTING THE CALIBRATION AND THE REFERENCE MATERIAL TO THE PRIMARY STANDARD	10
4.1.2 STUDY OF THE CALIBRATION FUNCTION OF THE QUANTITATIVE PCR STEP	11
4.1.3 LIMIT OF DETECTION	14
4.1.4 LIMIT OF QUANTIFICATION	16
4.1.5 POSITIVITY THRESHOLD	16
4.1.6 STUDY OF THE YIELD AND ROBUSTNESS	17
4.1.7 SELECTIVITY: INCLUSIVITY AND EXCLUSIVITY	18
4.1.8 PRACTICABILITY	19
4.2 INTER-LABORATORY STUDY	21
4.2.1 METHODOLOGY	21
4.2.2 RESULTS	21
4.2.3 CONCLUSION	21
5 GENERAL CONCLUSIONS	22
6 BIBLIOGRAPHY	23
APPENDIX 1: FITTING TO THE PRIMARY STANDARD	24
ATTENDIA I. TITTING TO THE TRIMART STANDARD	
APPENDIX 2: CALIBRATION FUNCTION	26
APPENDIX 3: LIMIT OF DETECTION	27
AENOR Validation by AENOR	
AFNOR Validation by AFNOR Certification	V0
Openicion	July 2023
Summary report	3
iQ-Check™ Legionella	
pneumophila	

APPENDIX 4: LIMIT OF QUANTIFICATION	30
APPENDIX 5: YIELD AND ROBUSTNESS	31
APPENDIX 6. SELECTIVITY	40

1 Introduction

iQ-Check[™] *Legionella* spp and iQ-Check[™] *Legionella* pneumophila kits were validated in 2007. Then, they were renewed in 2011, 2015, 2019 and extended in 2012 and 2020.

In 2023, Bio-Rad wishes to extend the use of this method on their new CFX Opus 96 thermal cyclers and to demonstrate the ability to save the calibration curve generated by a batch for reuse it until the end of the batch. This extension has been realized according to the "Validation protocol for commercial methods of detection and quantification of *Legionella* and *Legionella pneumophila* by concentration and gene amplification by polymerase chain reaction (PCR) V3.0 ".

2 Review of changes in the alternative method since the previous validation

2.1 <u>History of validation</u>

2007:

The method was initially validated in 2007.

2011:

- 2010/2011 study for renewal of validation considered the modifications of validated kit and of validation protocol (renewal n°1 considering norm NF T90-471 published in April 2010).
- ❖ A third-party study has focused on two first phases of validation protocol aiming to verify supplier announced performances for new formulation of iQ-Check[™] L. pneumophila kit:
 - Phase 1: Study of limit of detection and limit of quantification of PCR step, calibrating function, link to primary standard, efficiency and robustness of extraction with Aquadien™ kit. New thermal cycler CFX 96 was implemented.
 - Phase 2: Study of inclusivity and of exclusivity, of practicability and of reagents quality.
- ❖ Interlaboratory study realized in 2007 was not made again
- New modification from initial validation was:
 - iQ-Check[™] L. pneumophila kit: New origin of Taq polymerase and chemical evolution of IPC probe (TEXAS RED fluorophore was replaced by HEX fluorophore)
 - Aquadien Kit: two modalities of utilization according to sample filterability (protocol W2 for clogging samples added to classical protocol) and horizontal doubletangential microfiltration for DNA purification step. Membranes and materials composition do not change.

New thermal cycler can be used: CFX96 with CFX Manager Software Industrial Diagnostic Edition version V1.1.

2012:

- ❖ Validation extension was pronounced in 2012 after evolution of characteristics of thermal cycler CFX96 which becomes CFX96 Deep Well Touch. Modifications concern reactional volume of heating block, user interface (keyboard and screen), and software CFX Manager which pass in version V1.2
- * AFNOR Certification Technical Group qualified theses evolutions as minor and without impact on kit performance. No new assays were performed.

2013:

- **❖ Late May 2013**: Validation of iQ-Check™ *L. pneumophila* method was extended to norm ISO/TS 12869. No study complement was necessary: Assays performed according to norm NF T90-471 answers to requirements of ISO/TS 12869 and follow migration to revision 2 of validation protocol.
- ❖ November 2013: Evolution of software CFX manager IDE v2.1. No study complement was necessary.

2015:

- ❖ March 2015: Evolution of software CFX manager IDE v2.2. No study complement was necessary.
- ❖ October 2015: Renewal of iQ-Check™ *L. pneumophila* method with extension on detection (qualitative research) of Legionella pneumophila without supplementary test. AFNOR Certification Technical Group qualified this evolution without impact on kit performance. No new assays were performed.

2018:

❖ June 2018: Evolution of the CFX manager iIE v3.0 software version. No further validation studies were required

2019:

❖ December 2019: Renewal of iQ-Check™ Legionella spp. and Legionella pneumophila methods. No new assays were performed.

2020:

❖ December 2020: Extension of iQ-Check™ Legionella spp. and Legionella pneumophila methods. Modifications of the protocols of DNA extraction with Aquadien™ kit. The extension of the iQ-Check™ *Legionella* only concerned the study of the yield and robustness.

2023:

❖ June 2023: Extension of iQ-Check™ Legionella spp. and Legionella pneumophila methods. Extension of the use of this method on their new CFX Opus 96 thermal cyclers. The extension of the iQ-Check™ Legionella only concerned a verification of the performances of the calibration function of the new thermal cycler in comparison with the previously validated thermal cycler and evolution of the "CFX Manager Industrial Diagnostic Edition" software from version V3.0 to version V3.1. All the thermal cyclers validated can be used with this version of the software. Demonstration of the ability to save the calibration curve generated by a batch for reuse it until the end of the batch

The validation history is summarized in the following table:

Method	Date of approval	Type of validation	Comments	Expert laboratory	Protocol of validation
	18/12/2007	Validation		IPL SED Nord	Rev. 0 (2006)
	10/06/2011	Renewal 1	Evolution of mix PCR 2 extraction modalities (protocol W2) Update according to the version 1 protocol	IPL SED Nord	Rev. 1 (2011)
	04/04/2012	Extension 1	New thermal cycler (Deep Well touch)	Eurofins IPL Nord	Rev. 1 (2011)
	27/05/2013	Extension 2	Protocol of validation V.2	NA	Rev. 2 (2013)
	05/11/2013	Modification	Software V2.1	NA	Rev. 2 (2013)
	09/03/2015	Modification	Software V2.2	NA	Rev. 2 (2013)
iQ-Check TM Legionella pneumophila	18/12/2015	Renewal 2	The modifications between the version 2.0 and 3.0 of the AFNOR validation protocol relates to the positivity threshold (quantitative detection). There was no additional study.	AdGène (with extension on qualitative test)	Rev. 3 (2015)
	June 2018		Software V3.0		
	Dec. 2019	Renewal 3	There was no additional study.	AdGène	Rev. 3 (2015)
	2020	Extension 3	Evolution of DNA extraction kit Aquadien TM protocols: short protocols & Free DNA Remove Solution protocol (FDRS protocol)	AdGène	Rev. 3 (2015)
	2023	Renewal 4 and Extension 4	New thermal cycler (CFX Opus 96) Software V3.1 – Saving of the calibration curve	Upscience	Rev. 3 (2015)

2.2 Review of changes in the alternative method

The validation protocol is identical to that of the last renewal.

<u>Changes to the alternative method</u>: none

This extension study is due to the releasing of the new CFX Opus 96 thermal cyclers (CFX Opus 96 and CFX Opus 96 Deep Well). The CFX Opus 96 thermal cyclers uses

pneumophila

V0

the same technology as the previous CFX96 (Peltier heating block), the same software* to interpret the results, the same thermal profiles. The changes are mainly in terms of design & connectivity (Wi-Fi, Ethernet and USB; Cloud connectivity). For this extension, a verification of the performances of the calibration function of the new thermal cycler in comparison with the previously validated thermal cycler has been realized.

*Evolution of the "CFX Manager Industrial Diagnostic Edition" software from version V3.0 to version V3.1. The calculation algorithm as well as the criteria for interpreting the results remain unchanged. This new version is required for piloting actual and the new thermal cyclers.

2.3 Review of user complaints about the method

No user customer claims have been registered by AFNOR Certification.

Methods protocols

3.1 Principle of alternative method

iQ-Check™ Legionella *pneumophila* kit is intended to detect or to quantify bacteria genus Legionella species pneumophila in water sample, due to Polymerase Chain Reaction (PCR). PCR allows amplification and detection of specific sequences with specific primers and fluorescent probe.

Principle is based on three steps:

- Sample filtration
- DNA extraction with Aquadien™ kit (and W2 protocol for clogging samples and Free DNA Removal Solution protocol (FDRS)).
- Legionella pneumophila target sequences amplification.

DNA extraction with Aquadien kit is based on alkaline lysis with thermal shock. It is followed by an ultrafiltration purification step. A DNA fraction is amplified by real-time PCR (Amplification of a virulence gene (mip) for L. pneumophila and a structural gene (rRNA5S) for L. spp.).

Primers hybridize to target sequence during PCR reaction. Tag polymerase uses primers and nucleoside triphosphates (dNTPs) to stretch DNA and to create copies of Legionella pneumophila target DNA.

Specific probe hybridizes to amplicons during PCR. This probe is labelled with a fluorophore which emit fluorescence only after hybridization. Fluorescence intensity increases proportionally with increasing of PCR products.

Fluorescence is directly measured by optical system of the thermal cycler during hybridization step. Thermal cycler software manage in real-time the measured fluorescence function of number of amplification cycles. Software determines a Cq (cycle from which fluorescence is higher than background signal). Reading Cq permits to detect presence of *Legionella pneumophila* target sequences. Detection of target sequences indicates presence of the bacteria in water sample.

Quantification is possible by using calibrated DNA solutions iQ-Check™ *Legionella* Quantification Standards. These standards are connected to primary standard of "Centre National de Référence des Légionelles". PCR inhibition phenomenon is detected by the use of a synthetic DNA (internal control − IC) included in amplification solution with each sample. IPC is amplified during same time than target sequences, with same primers but with a different probe and a different fluorophore.

iQ-Check™® Legionella pneumophila kits are validated with the following materials:

Software	Opticon Monitor 3.4	CFX manager Software Industrial Diagnostic Edition V2.2	CFX manager Software Industrial Diagnostic Edition V3.0	CFX manager Software Industrial Diagnostic Edition V3.1
Thermal cyclers	Chromo4	CFX96	CFX96 CFX96 Deep Well	CFX96 CFX96 Deep Well CFX Opus 96

3.2 References of protocol

Aquadien™ (Réf. 3578121) : 12/2015 – Code : 881116

iQ-Check™L. pneumophila (Réf. 3578103): 12/2015 – Code: 881117

3.3 Restrictions

The kit certification is for use with Bio-Rad Chromo™4; CFX96 DeepWell and CFX Opus 96 thermal cyclers.

3.4 Reference method*

❖ NF T90-471 (June 2015): Water quality- Detection and quantification of Legionella and/or Legionella pneumophila by concentration and genic amplification by real time polymerase chain reaction (qPCR)

- ❖ ISO/TS 12869 (April 2019): Water quality Detection and quantification of Legionella spp. and/or Legionella pneumophila by concentration and genic amplification by quantitative polymerase chain reaction (qPCR)
- ❖ Validation protocol for commercial methods of detection and quantification of Legionella and Legionella pneumophila by concentration and gene amplification by polymerase chain reaction (PCR) V3.0

4 Summary of results

The results presented below were obtained with the V1.0, V2.0 and the V3.0 revisions of the validation protocol for commercial methods of detection and quantification of Legionella and Legionella pneumophila by concentration and gene amplification by polymerase chain reaction (PCR).

Results obtained for the verification of the performances of the calibration function of the CFX Opus 96 new thermal cycler in comparison with the previously validated CFX 96 thermal cycler have been included (2023).

4.1 Comparative study

4.1.1 Fitting the calibration and the reference material to the primary standard* These results have been obtained by the laboratory IPL SED Nord (2011).

Methodology

Linking of working calibration solution to primary standard is made to cover the quantification domain with 3 ranges of calibrated DNA iQ-Check™ Legionella pneumophila which contain 4 levels of concentrations of Genome Unity of Legionella pneumophila serogroup (QS1, QS2, QS3, QS4) and 3 independent ranges of primary standard aiming at the 4 levels of concentrations of range of calibrated DNA iQ-Check™ Legionella Quantification Standards.

Linking of reference material to primary standard is evaluated analysing results of 2 deposits of reference material given with iQ-Check™ Legionella pneumophila kit.

Results

Analysed parameters for evaluation of linking of calibration solution and of reference material to primary standard on thermal cycler CFX96 and Chromo 4 are submitted in next table:

	Regression curve	Correlation	Efficiency (%)
Reference range (CFX96)	C(t) average = -3,429.log(x) + 39,891	0,998	95,7
Reference range (Chromo 4)	C(t) average = -3,330.log(x) + 39,229	0,993	99,7

Calibration solution		Calibration error		
	QS1	QS2	QS3	QS4
Per level (CFX96)	0,03	0,12	0,12	0,10
Per level (Chromo 4)	-0,05	0,00	0,00	0,06
Average (CFX96)		0,09		
Average (Chromo 4)		0,00		
Slopes equivalence (CFX96)		0,07		
Slopes equivalence (Chromo 4)		0,11		

Reference material	Calibration error
CFX96	0,09
Chromo 4	0,16

The raw data are presented in appendix 1.

Conclusion

Calibration solution and reference material of iQ-Check™ *Legionella pneumophila* kit satisfy conditions of linking to primary standard with thermal cycler CFX96.

Calibration solution satisfies conditions of linking to primary standard with thermal cycler Chromo 4. Reference material of iQ-Check™ *Legionella pneumophila* kit satisfies conditions of linking to primary standard with thermal cycler Chromo 4.

4.1.2 Study of the calibration function of the quantitative PCR step*

These results have been obtained by the laboratory IPL SED Nord (2011) and by the laboratory Upscience (2023).

Methodology

Study of calibration function is made deposit 5 different reference ranges of calibrated DNA solution iQ-Check™ *Legionella* Quantification Standards (comprising 4 levels of concentration of Genome Unity of *Legionella pneumophila*), given with iQ-Check™ *Legionella pneumophila* kit.

5 measures are made with iQ-Check™ *Legionella pneumophila* kit for each level of concentration in reproducibility conditions.

Results

Equation of regression curve and efficiency of PCR reaction are defined in these conditions. Results are obtained on **CFX96**.

Regression curve	-3,618.log(x) + 42,447
Efficiency	89,0 %
r²	0,999

	QS1	QS2	QS3	QS4
Bias	0,00	-0,02	0,02	-0,01
Standard deviation	0,15	0,03	0,04	0,07
Exactitude of linearity	0,15	0,03	0,05	0,07
Uncertainty of linearity	0,47	0,10	0,15	0,22

The raw data are presented in appendix 2.

Results obtained by the laboratory Upscience (2023)

Results of the comparison obtained on **CFX96** and **CFX Opus 96**:

CFX96					
QS1 QS2 QS3 QS4					
Bias	0,08	0,09	0,07	0,09	
Standard deviation	0,05	0,01	0,06	0,01	
Exactitude of linearity	0,09	0,09	0,10	0,09	
uncertainty of linearity	0,26	0,26	0,27	0,24	

Regression curve	$-3,259.\log(x) + 39,42$
Efficiency	102,7%
r²	0,995

CFX Opus 96					
QS1 QS2 QS3 QS4					

pneumophila

July 2023

V0

Bias	0,04	0,04	0,06	0,06
Standard deviation	0,11	0,04	0,01	0,07
Exactitude of linearity	0,12	0,06	0,06	0,09
uncertainty of linearity	0,32	0,16	0,18	0,25

Regression curve	$-3,286.\log(x) + 39,386$
Efficiency	101,5%
r²	0,998

The raw data are presented in Appendix 2.

Conclusion

Linear regression satisfies exigence of exactitude lower than 0.15log for each level of reference range both the CFX 96 and CFX Opus 96 thermal cyclers. Linearity is verified on the whole domain cover by the range of calibrated DNA solution iQ-Check™ *Legionella* Quantification Standards given with iQ-Check™ *Legionella pneumophila*. kit.

■ Complementary study – Save of the calibration curve

In 2023, Bio-Rad wishes to demonstrate the ability to save the calibration curve generated by a batch for reuse it until the end of the batch. For that, calibration curve is analysed with the 4 levels of concentration (QS1; QS2; QS3; QS4) before to save this generated curve. Then, the QS2 point was analysed over several weeks to verify conformity.

Calibration curve								
Nom	QS1	QS2	QS3	QS4				
Copy number (log)	1,28	2,59	3,59	4,59				
CFX 96	35,24	31,36	28,07	24,22				
	35,05	31,25	28,07	24,19				
CFX Opus 96	35,70	30,90	27,33	24,07				
	35,55	30,72	27,38	24,12				

CFX 96								
QS2 =		390 copies (Log : 2,59)						
Date	Point	СТ	Copy number	Log copy number	Deviation theoretical value (Log)			
15/05/2023	QS2	30,34 30,69	611 477	2,79 2,68	0.20 0.09			
23/05/2023	QS2	30,41	582	2,76	0.17			

		31,04	373	2,57	-0.02
00/05/0000	000	31,08	362	2,56	-0.03
26/05/2023	QS2	30,53	534	2,73	0.14
30/05/2023	000	31,02	378	2,58	-0.01
	QS2	30,8	442	2,64	0.05

CFX OPUS 96							
QS2	=		390 copies (Log : 2,59)				
Date	te Point		Copy number	Log copy number	Deviation theoretical value(Log)		
15/05/2023	QS2	30,75 30,59	425 475	2,63 2,68	0.04 0.09		
23/05/2023	QS2	30,74 30,82	428 404	2,63 2,61	0.04 0.02		
26/05/2023	QS2	30,91 30,72	380 434	2,58 2,64	-0.01 0.05		
30/05/2023	QS2	30,74 30,55	428 488	2,63 2,69	0.04 0.10		

The calculated quantity of the QS is within ± 0.3 log of the theorical value. The results of the save of the calibration curve are satisfactory.

4.1.3 Limit of detection*

These results have been obtained by the laboratory IPL SED Nord (2011).

Methodology

Evaluation of limit of detection is made from 30 independent dilutions of *Legionella* pneumophila DNA in concentration of 5 GU per PCR reaction. Duplicate amplifications are made in repeatability conditions. Results are obtained on CFX96.

Results

Echantillons à la concentration 5UG

Sample	C(t)	I.C. C(t)	SQ
e1	N/A	32,04	
	38,81	32,02	3,68
e2	39,05	32,08	3,11
	38,83	31,98	3,63
e3	37,98	31,86	6,66
	39,52	31,72	2,23
e4	38,57	31,87	4,38
	39,44	31,77	2,35
e5	42,73	32,05	0,23
	40,3	32,03	1,28
e6	39,9	31,93	1,71
	39,65	31,99	2,03
e7	38,37	31,81	5,04
	39,73	31,88	1,92
e8	39,28	32,05	2,65
	39,02	31,89	3,18
e9	38,69	32,09	4,01
	39,19	31,98	2,81
e10	40,62	31,79	1,02
	39,18	31,92	2,84
e11	39,56	31,89	2,17
	38,09	31,86	6,15
e12	39,1	32,01	3,01
	39,2	31,6	2,79
e13	40,67	31,77	0,98
	39,55	32,02	2,19
e14	39,01	31,96	3,20
	40,25	31,68	1,33
e15	38,17	31,71	5,81
	38,93	31,68	3,40
e16	39,69		1,97
	41,36	31,64	0,61
e17	38,62		4,22
	41,32	31,86	0,62

e18	38,65	32,04	4,14
	38,54	31,99	4,45
e19	39,27	31,55	2,67
	38,13	31,71	5,98
e20	39,24	31,85	2,72
	39,47	32,02	2,31
e21	38,12	32,17	6,03
	39,76	31,93	1,88
e22	40,31	32,02	1,27
	40,17	31,89	1,41
e23	39,48	31,93	2,30
	40,21	31,77	1,37
e24	41,17	31,97	0,69
	39,48	32,18	2,29
e25	39,95	32,23	1,65
	40,02	32,15	1,56
e26	39,93	31,74	1,67
	42,08	32,62	0,36
e27	41,1	31,93	0,73
	42,21	32	0,33
e28	40,01	32,2	1,57
	41,14	32,01	0,71
e29	N/A		N/A
	38,17	32,07	5,82
e30	37,35	31,95	10,36
	38,08	31,97	6,19

All results are presented in appendix 3.

Conclusion

The 30 duplicates are positives excepted for e1 and e29 where only one repetition have given a positive result. Limit of detection is validated for 5 GU per PCR reaction.

The majority of Ct in previous table are lower than intercept and the rare values above do not impact the compliance of the detection limit at 5 UG per PCR. Qualitative detection is conforming.

4.1.4 Limit of quantification*

These results have been obtained by the laboratory IPL SED Nord (2011).

Methodology

Evaluation of limit of quantification is made from 30 independent dilutions of *Legionella* pneumophila DNA in concentration of 15 GU per PCR reaction. Duplicate amplifications are made in repeatability conditions. Results are obtained on **CFX96**.

Results

	Results	Theoretical values or validation criteria
Average x' (Log GU/well)	1,337	1,279
Standard deviation (Log GU/well)	0,102	
Bias	0,059	
LQ Exactitude	0,117	0,15
LQ Uncertainty	0,240	

All results are presented in appendix 4.

Conclusion

Value of exactitude of limit of quantification is estimated at 0.101. This value is lower than 0.15. Limit of quantification is validated for 15 GU per PCR reaction for iQ-Check™ Legionella pneumophila kit.

4.1.5 Positivity threshold

These results have been obtained by the laboratory IPL SED Nord (2011).

User manual foresees a Cq of 43 hereafter whose samples are considered as lower than the limit of detection

All values for characterization of limit of detection have Cq lower than 43. This value corresponds to the positivity threshold lower than limit of detection.

pneumophila

4.1.6 Study of the yield and robustness*

Results for Aquadien[™] and Aquadien W2 (for clogging waters) protocols have been obtained by the laboratory **IPL SED Nord** in **2011**. Results for Aquadien[™]; Aquadien W2; and FDRS short protocols have been obtained in **2020** by the laboratory **AdGène**.

Methodology

Studies of extraction efficiency were realized with extraction kit Aquadien™ in classical and short protocols. Efficiency was evaluated on 10 independent samples, which were artificially contaminated with two levels of concentrations of *Legionella pneumophila* ATCC 33152 (1000 and 100 000 GU/ PCR reaction). Samples were 3 different matrices: sterile water, domestic hot water and water from air cooling-tower.

Samples were artificially contaminated by primary bacterial suspension. Its concentration was determined by 3 quantifications after an extraction step of DNA by direct lysis on 3 aliquots. Results are obtained on **CFX96**.

Results

		YIELD				
	Aquadi	Aquadien Protocol Aquadien Protocol W				
		Log	Average	Log	Average	
Domestic hot water	1000 GU/L	-0,41	-0,41	-0,47	0.51	
	100 000 GU/L	-0,40	-0,41	-0,56	-0,51	
Water from cooling-	1000 GU/L	-0,17	0.24	-0,47	-0,49	
tower	100 000 GU/L	-0,51	-0,34	-0,51		
Mineral water	1000 GU/L	-0,18	0.20	-0,47	0.45	
	100 000 GU/L	-0,38	-0,28	-0,44	-0,45	
Average yield (log)		-0,34		-0,49		
Variance (log)		0,03		0,01		
Global extended unc	ertainty (log)		0,77	0,9	98	

pneumophila

V0

			Y				
		Aquadien Short Protocol		Aquadien \ Proto		Aquadien FDRS Short Protocol	
		Log Average		Log	Average	Log	Average
Domestic hot water	1000 GU/L 100 000 GU/L	-0.35 -0.27	-0.31	-0.23 -0.27	-0.25	-0.23 -0.27	-0.25
Water from cooling-tower	1000 GU/L 100 000 GU/L	-0.32 -0.33	-0.33	-0.25 -0.31	-0.28	-0.31 -0.34	-0.32
Mineral water	1000 GU/L 100 000 GU/L	-0.35 -0.33	-0.34	-0.30 -0.27	-0.29	-0.30 -0.36	-0.33
Average yield (log)		-0.33		-0.27		-0.3	
Variance (log)		0.01		0.01		0.02	
Global extended uncertainty (log)		0).68	0.5	9	0.65	

Raw data are presented in appendix 5.

Conclusion

Study of efficiency and robustness of extraction method allows evaluating average efficiency of:

- Aquadien method: -0,34 log
- Aquadien W2 method: -0,49 log
- Aquadien short method: -0,33 log
- Aquadien W2 short method: -0,27 log
- Aquadien FDRS short method: -0,3 log

Efficiencies with five extraction methods are conforming to criteria -0,6 log / +0,3 log (equivalent to efficiency comprise between 25% and 199%).

4.1.7 Selectivity: inclusivity and exclusivity*

Results have been obtained by the laboratory IPL SED Nord (2011).

DNA was extracted from pure bacterial suspension for each strain.

Inclusivity

Inclusivity assays were realized on DNA extracts with concentration about 100 GU per PCR reaction. Concentrations were estimated by O.D.600nm of bacterial suspension.

V0

DNA of 15 Legionella pneumophila were amplified.

All results are presented in appendix 6.

Exclusivity

Exclusivity assays were realized on DNA extracts with concentration about 10 000 GU per PCR reaction. Concentrations were estimated by O.D.600nm of bacterial suspension.

DNA of 16 strains non-Legionella 9 strains non-Legionella *pneumophila* tested were not amplified.

All results are presented in appendix 6.

Conclusion

The selectivity of the iQ-Check kit™ *Legionella pneumophila* is consistent.

4.1.8 Practicability

Protocol	R1 solution	W2 solution	FDRS solution	R2 solution	Time
Aquadien	2 mL	-	-	100 μL	1h10
Aquadien short	1 mL	-	-	100 μL	40 min
Aquadien W2	2 mL	200 μL	-	350 μL	1h10
Aquadien W2 short	1 mL	100 μL	-	225µL	1h10
Aquadien FDRS short	500 μL	-	40μL	100 μL	1h10

- ❖ Ease of use: reagents are all supplied with kits and are ready-to-use. Serial analyses from 1 to 30 samples, for quantification, are easy to make. A technician, who knows microbiology and molecular biology techniques and the specific thermal cycler and its software, can be trained in 1 day.
- ❖ Fast results report: duration of different phases is compatible with a short results report (5 hours).

*	Results security : It guarantees by utilization of inhibition internal control (in same reaction well than sample) and by a software of results analysis. Use of software ensures traceability of complete information.

4.2 Inter-laboratory study

4.2.1 Methodology

Inter-laboratories study was realized in 2007 with 14 collaborating laboratories. Results of one laboratory were not taken into account because of technical problem which invalidated standardization. 13 laboratories were retained for statistical exploitation. Goal of this study is to evaluate fidelity (repeatability and reproducibility) of iQ Check™ Legionella pneumophila method:

- For only amplification step (2 DNA solutions of *L. anisa* et *L. pneumophila* sg1 at 2 different levels of concentration).
- For complete analysis (concentration, lysis, extraction, purification and gene amplification) on characterized bacterial suspensions of *L. pneumophila* and *Escherichia coli* (CIP 54.8) at 2 different levels of concentration).
- For whole analysis in real situation (hot domestic water naturally contaminated by *L. pneumophila* and *Legionella* spp.).
- For a water guarantees without any DNA of Legionella.

4.2.2 Results

	Type of samples		ted DNA ution		ed Tap ater	water Natural sample
Spiking levels (GU/L)	L. pneumophila ATCC 33152 L. anisa	2000 GU/μl 500 GU/μl	20000 GU/µl 5000 GU/µl	4000 GU/200 ml 1000 GU/200 ml	40000 GU/200 ml 10000 GU/200 ml	hot water naturally
(= =:=)	E. coli			5000 GU/200 ml	50000 GU/200 ml	contaminated
Number of	Participant	14	14	14	14	14
laboratories	Retained	13	13	13	13	13
Homogeneity Test	Number of analyses	20	20	9	9	9
Homogeneity Test	Average (Log)	2.91	3.97	3.42	4.41	3.76
	Average (Log)	2.93	3.96	3.40	4.44	3.18
	r (Log)	0.18	0.08	0.23	0.20	0.62
Results	R (Log)	0.20	0.15	0.96	0.84	0.87
	Sr (Log)	0.06	0.03	0.1	0.07	0.22
	SR (Log)	0.04	0.05	0.24	0.29	0.21

4.2.3 Conclusion

Repeatability values in r (log) are about 0.1 for DNA solutions (only PCR step) and about 0.2 - 0.6 for bacterial suspensions (global method). This is acceptable. Signification of these results is that we can wait for factor 2.5 measurement of deviation in a same laboratory. Repeatability is not a major source of error.

Reproducibility values in R (log) are about 0.2 for DNA solutions (only PCR step) and about 0.9 for bacterial suspensions (global method). Compared to repeatability, this order of magnitude is equivalent to values that we can obtain for environmental microbiology analyses. Signification of these results is that we can wait for factor 8 of measurement deviation between 2 different laboratories. Reproducibility does not participate in an unreasonable way to result dispersion.

5 General conclusions

Performances of iQ-Check™ *Legionella pneumophila* method are conforming to requirement of norms NF T90-471 and ISO/TS 12869, and of AFNOR validation protocol: "Validation protocol for commercial methods of detection and quantification of *Legionella* and *Legionella pneumophila* by concentration and gene amplification by polymerase chain reaction (PCR) V3.0".

The evolution of the "CFX Manager Industrial Diagnostic Edition" software from version V3.0 to version V3.1 required for piloting actual and the new thermal cyclers, does not affect the results given that the calculation algorithm as well as the criteria for interpreting the results remain unchanged.

iQ-Check[™] Legionella *pneumophila* kit is a kit validated for **detection and quantification** of *Legionella* and/or *Legionella pneumophila* by concentration and gene amplification by real-time Polymerase Chain Reaction (qPCR).

Done at Thury-Harcourt, July 3, 2023 Mickaël MORVAN Research & Development Engineer

6 Bibliography

Six studies have been published since 2008:

- Wéry, N., Bru-Adan, V., Minervini, C., Delgénes, J.-P., Garrelly, L., Godon, J.-J., 2008. <u>Dynamics of Legionella spp. and Bacterial Populations during the Proliferation of L. pneumophila in a Cooling Tower Facility.</u> Applied and Environmental Microbiology, 74(10), 3030–3037.
- ❖ Ditommaso, S., M., Elisa Ricciardi, S., Giacomuzzi, R. Arauco Rivera, S., M. Zotti, C., 2015. <u>Legionella</u> in water samples: How can you interpret the results obtained by quantitative PCR? Molecular and Cellular Probes. 29:7–12.
- ❖ Ditommaso, S., Giacomuzzi, M., Elisa Ricciardi, M. Zotti, C., 2016. <u>Cultural and Molecular Evidence of Legionella spp. Colonization in Dental Unit Waterlines: Which Is the Best Method for Risk Assessment?</u> *International Journal of Environmental Research and Public Health.* 13(2): 211
- Montagna, M. T., De Giglio, O., Cristina, M.L., Napoli, C., Pacifico, C., Agodi., A., Baldovin, T., Casini, B., Coniglio., M. A., Mario D'Errico, M., Delia, S. A., Deriu, M. G., Guida, M., Laganà, P., Liguori, G., Moro, M., Mura, I., Pennino, F., Privitera, G., Spica, V.R., Sembeni, S., Spagnolo, A.M., Tardivo, S., Torre, I., Valeriani, F., Albertini, R., Pasquarella, C., 2017. Evaluation of Legionella Air Contamination in Healthcare Facilities by Different Sampling Methods: An Italian Multicenter Study. International Journal of Environmental Research and Public Health. 14(7): 670
- Bonetta, S., Pignata, C., Bonetta, S., Meucci, L., Giacosa, D., Marino, E., Gilli, G., Carraro, E., 2017. Viability of Legionella pneumophila in Water Samples: A Comparison of Propidium Monoazide (PMA) Treatment on Membrane Filters and in Liquid. International Journal of Environmental Research and Public Health. 14(5), 467
- ❖ Bayle, S., Martinez-Arribas, B., Jarraud, S., Giannoni, P., Garrelly, L., Roig, B., Cadière, A., 2020. <u>Development of a DGGE method to explore Legionella communities</u>. *Heliyon*, 6(1).

In six articles, iQ-Check *Legionella* methods were used with satisfaction.

There have been no external validations by another certification body

Appendix 1: Fitting to the primary standard

Results from iQ-Check™ Quanti L. pneumophila – Extension 2011 - v01 achieved by IPL santé, environnement durables Nord

Raccordement sur CFX96

Gamme de référence

Niveaux testés (UG/puits)	(UG/puits)	15	420	4200	42000
	log (UG/Puits)	1,17609	2,62325	1,17609 2,62325 3,62325 4,62325	4,62325
C(t) obtenus	Gamme étalon 1	35,63	31,05	27,39	24,10
		35,90	31,23	27,35	24,02
	Gamme étalon 2	35,26	30,96	27,48	24,07
		36,33	30,87	27,71	23,88
	Gamme étalon 3	35,61	31,09	27,35	24,10
		36,01	31,01	27,28	23,89
Pente			-3,4	-3,429	
Ordonnée à l'origine	rigine		39,	39,891	
Corrélation (r²)			5'0	966'0	
Efficacité (%)			.98	95.727	

Raccordement de la solution calibrante

Solution calibrante

Niveaux estimé (UG/puits)	ié (UG/puits)	19	390	3900	39000
	log (UG/Puits)	1,27875	1,27875 2,59106 3,59106 4,59106	3,59106	4,59106
C(t) obtenus	Gamme calib 1	35,66	31,48	28,10	24,45
		35,35	31,49	27,93	24,57
	Gamme calib 2	35,81	31,65	27,82	24,48
		35,65	31,24	28,02	24,48
	Gamme calib 3	35,92	31,49	28,00	24,51
		35,22	31,22	28,00	24,42
C(t) moyen par niveau	ır niveau	35,60	31,43	27,98	24,49
Quantité retro	λuantité retrouvée par niveau (Ld	1,25	2,47	3,47	4,49
Erreur de calibr par niveau	or par niveau	0,03	0,12	0,12	0,10
	moyenne		0	60'0	
Vérification de	/érification de l'équivalence des		0	0.07	

Raccordement du matériau de référence

Matériau de référence

5.	2,73239
MR2	*000
MR2	30,84
	30,80
	30,82
Quantité retrouvée par niveau (Log)	2,65
Erreur de calibrage	60'0

Raccordement sur Chromo 4

Gamme de référence

Niveaux testés (UG/puits)	(UG/puits)	15	420	4200	42000
	log (UG/Puits)	1,17609	1,17609 2,62325 3,62325 4,62325	3,62325	4,62325
C(t) obtenus	Gamme étalon 1	34,98	30,54	27,19	23,94
		35,06	30,83	26,71	23,76
	Gamme étalon 2	35,04	30,97	27,35	23,95
		36,5	30,17	27,23	23,61
	Gamme étalon 3	35	30,46	26,61	24,01
		35	30,78	27,37	23,79
Pente			-3,	-3,330	
Ordonnée à l'origine	igine		39.	39,229	
Corrélation (r²)			6'0	0,993	
Efficacité (%)			66	22,627	

Raccordement de la solution calibrante

Solution calibrante

Niveaux estimé (UG/puits)	é (UG/puits)	19	390	3900	39000
	log (UG/Puits)	1,27875	2,59106	1,27875 2,59106 3,59106 4,59106	4,59106
C(t) obtenus	Gamme calib 1	34,49	30,59	27,30	24,17
		35,61	31,00	27,66	24,43
	Gamme calib 2	34,55	30,42	27,19	24,48
		34,89	30,63	27,40	23,93
	Gamme calib 3	34,96	30,58	26,99	23,98
		34,36	30,41	27,13	23,93
C(t) moyen par niveau	r niveau	34,81	30,61	27,28	24,15
Quantité retrou	Quantité retrouvée par niveau (Ld	1,33	2,59	3,59	4,53
Erreur de calibr par niveau	r par niveau	-0,05	00'0	00'0	90'0
	moyenne	8	0	00'0	
Vérification de	Vérification de l'équivalence des		0	0.11	

Raccordement du matériau de référence

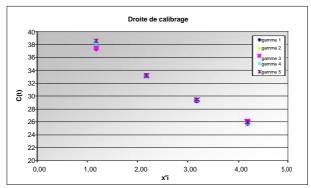
Matériau de référence

Valeur de référ (UG/puits)	540
log (UG/Puits)	2,73239
C(t) obtenus MR1	30,74
MR2	30,57
C(t) moyen	30,66
Quantité retrouvée par niveau (Log)	2,58
Errour do colibrado	0.40

Appendix 2: Calibration function

Niveau (UG/puits)	$\frac{x_i}{x'_i = \text{Log}(x_i)}$
	7 0(17
gamme y _{ij} k=5 répétitions	gamme 1
	gamme 2
	gamme 3
	gamme 4
	gamme 5
Moyenne	mi

	19	390	3900	39000
	1,28	2,59	3,59	4,59
	37,60	33,28	29,21	26,01
	37,08	33,15	29,30	25,40
	37,47	33,21	29,33	25,99
	37,61	33,05	29,42	25,85
;	37,65	33,11	29,44	26,06
	37,34	33,22	29,31	26,15
;	38,39	33,01	29,26	25,71
	37,77	33,00	29,45	25,54
	38,58	33,23	29,30	26,02
	38,60	33,06	29,72	25,97
;	37,81	33,13	29,37	25,87


19	390	3900	39000
1,28	2,59	3,59	4,59
37,34	33,22	29,26	25,71
37,54	33,13	29,38	25,92
37,50	33,17	29,38	26,11
38,08	33,01	29,36	25,63
		•	
38,59	33,15	29,51	26,00
		•	
37,81	33,13	29,37	25,87

Estimation de la droite de régression

Pente	a =	-3,618
Ordonnée à l'origine	b =	42,447

Estimation de l'efficacité

Efficacité	e =	89,0%

Vérification des performances de la régression linéaire

Niveau	Χį		
	$x'_i = \text{Log}(x_i)$		
gamme	gamme 1		
Уij			
	gamme 2		
k=5 répétitions			
	gamme 3		
	gamme 4		
	gamme 5		
Mayanna	m.		
Moyenne	m _i		

19	390	3900	39000
1,28	2,59	3,59	4,59
1,34	2,53	3,66	4,54
1,48	2,57	3,63	4,71
1,38	2,55	3,63	4,55
1,34	2,60	3,60	4,59
1,33	2,58	3,60	4,53
1,41	2,55	3,63	4,50
1,12	2,61	3,64	4,63
1,29	2,61	3,59	4,67
1,07	2,55	3,63	4,54
 1,06	2,59	3,52	4,55
 1,28	2,57	3,61	4,58

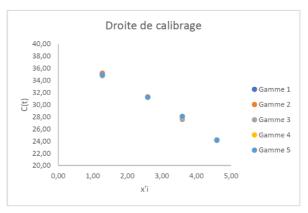
	1,28	2,59	3,59	4,59
Г				
	1,41	2,55	3,65	4,63
Г				
	1,36	2,58	3,61	4,57
Г				
	1,37	2,57	3,61	4,52
L	1,21	2,61	3,62	4,65
L	1,07	2,57	3,58	4,55
_				
	1.28	2.57	3.61	4.58

S =	
Elin =	
U _{LIN} =	
	E _{LIN} =

0,00	-0,02	0,02	-0,01
0,15	0,03	0,04	0,07
0,15	0,03	0,05	0,07
0,47	0,10	0,15	0,22

Results from iQ-Check™ Quanti L. pneumophila – Extension 2023 - achieved by Upscience (CFX96)

w mal na	x _i	19	390	3900	39000
Niveau (UG/puits)	$x'_i = Log(x_i)$	1,28	2,59	3,59	4,59
gamme	Gamme 1	35,24	31,36	28,07	24,22
y _{ij}	Gamme	35,05	31,25	28,07	24,19
k = 5 répétitions	Gamme 2	35,67	31,27	28,03	24,17
	Gamme 2	34,71	31,19	27,97	24,14
	Gamme 3	34,68	31,36	27,93	24,18
		34,91	31,26	27,23	24,23
	Gamme 4	34,97	31,29	28,02	24,05
	Garrine 4	34,91	31,34	28,01	24,22
	Gamme 5	34,38	31,21	28,03	24,08
	Gamine 5	35,47	31,27	28,12	24,26
	-				
Moyenne	m _i	35,00	31,28	27,95	24,17


19	390	3900	39000
1,28	2,59	3,59	4,59
35,15	31,31	28,07	24,21
35,19	31,23	28,00	24,16
34,79	31,31	27,58	24,21
34,94	31,31	28,01	24,13
34,92	31,24	28,08	24,17
35,00	31,28	27,95	24,17

Estimation de la droite de régression

Pente	a =	-3,259
Ordonnée à l'origine	-	39,42

Estimation de l'efficacité

Efficacité e =	102,7
----------------	-------

Vérification des performances de la régession linéaire

mi

Moyenne

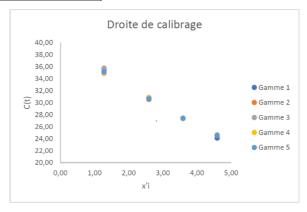
Nine and (LIC /antita)	Χi	19	390	3900	39000
Niveau (UG/puits)	$x'_i = Log(x_i)$	1,28	2,59	3,59	4,59
	•				
gamme	Gamme 1	1,28	2,47	3,48	4,66
Yij	Garrine	1,34	2,51	3,48	4,67
k = 5 répétitions	Gamme 2	1,15	2,50	3,50	4,68
	Gamme 2	1,45	2,52	3,51	4,69
	Gamme 3	1,45	2,47	3,53	4,68
	Garrine 3	1,38	2,50	3,74	4,66
	Gamme 4	1,37	2,49	3,50	4,71
	Garrine 4	1,39	2,48	3,50	4,67
	Gamme 5	1,55	2,52	3,49	4,71
	Gairine 5	1.21	2.50	2.47	4 CE

2,50

4,66 4,67		1,31	2,49	3,48	4,67
4,68 4,69		1,30	2,51	3,50	4,68
4,68 4,66		1,42	2,49	3,63	4,67
4,71 4,67		1,38	2,49	3,50	4,69
4,71 4,65		1,38	2,51	3,48	4,68
	_				
4,68		1,36	2,50	3,52	4,68

Biais	0,08	0,09	0,07	0,09
Ecart type S =	0,05	0,01	0,06	0,01
Exactitude de linéarité E _{UN}	0,09	0,09	0,10	0,09
Incertitude de linéarité II	0.26	0.26	0.27	0.24

No (110 /	X _i	19	390	3900	39000
Niveau (UG/puits)	$x'_i = Log(x_i)$	1,28	2,59	3,59	4,59
gamme	Gamme 1	35,70	30,90	27,33	24,07
Y _{ij}	Gamme 1	35,55	30,72	27,38	24,12
k = 5 répétitions	Gamme 2	34,76	30,49	27,34	24,43
	Garrine 2	35,12	30,57	27,34	24,61
	Gamme 3	35,97	30,82	27,36	24,67
	Gainine 3	35,56	30,93	27,48	24,58
	Gamme 4	34,85	30,80	27,41	24,64
	Odminic 4	35,35	30,91	27,30	24,65
	Gamme 5	35,16	30,67	27,42	24,60
	Gamme	35,21	30,64	27,42	24,55
Moyenne	m _i	35,32	30,75	27,38	24,49


19	390	3900	39000
1,28	2,59	3,59	4,59
35,62	30,81	27,36	24,10
34,94	30,53	27,34	24,52
35,76	30,88	27,42	24,63
35,10	30,85	27,36	24,64
35,19	30,66	27,42	24,58
35,32	30,75	27,38	24,49

Estimation de la droite de régression

Pente	a =	-3,2862
Ordonnée à l'origine	b=	39,386

Estimation de l'efficacité

Efficacité	e =	101,5
		202/0

Vérification des performances de la régession linéaire

Niveau (UG/puits)	Χi	19	390	3900	39000
Niveau (OG/puits)	$x'_i = Log(x_i)$	1,28	2,59	3,59	4,59
gamme	Gamme 1	1,12	2,58	3,67	4,66
Уij	Garrine	1,17	2,64	3,65	4,64
k = 5 répétitions	Gamme 2	1,41	2,71	3,66	4,55
	Garrine 2	1,30	2,68	3,67	4,59 4,66 4,64
	Gamme 3	1,04	2,61	3,66	4,48
	Garrine 3	1,17	2,57	3,62	4,64 4,55 4,50 4,48 4,50 4,49 4,48 4,50
	Gamme 4	1,38	2,61	3,64	4,49
	Garrine 4	1,23	2,58	3,68	4,48
	Gamme 5	1,29	2,65	3,64	4,50
	Garrine 3	1,27	2,66	3,64	4,51
	•				
Moyenne	mi	1,24	2,63	3,65	4,53

19	390	3900	39000
1,28	2,59	3,59	4,59
1,15	2,61	3.66	4,65
1,35	2,69	3,67	4,52
1,10	2,59	3,64	4,49
1,30	2,60	3,66	4,49
1,30	2,00	3,00	4,43
1,28	2,66	3,64	4,51
			-
1,24	2,63	3,65	4,53
1,24	2,03	3,03	4,33

Biais	0,04	0,04	0,06	0,06
Ecart type S =	0,11	0,04	0,01	0,07
Exactitude de linéarité E _{un}	0,12	0,06	0,06	0,09
Incertitude de linéarité U _{LIN}	0,32	0,16	0,18	0,25

Appendix 3: Limit of detection

Results from iQ-Check™ Quanti L. pneumophila – Extension 2011 - v01 achieved by IPL santé, environnement durables Nord

Echantillons à la concentration 5UG

Sample	C(t)	I.C. C(t) SQ	
e1	N/A	32,04 N/A	
-	38,81	32,02	3,68
2		·	′ 1
e2	39,05	32,08	3,11
	38,83	31,98	3,63
e3	37,98	31,86	6,66
	39,52	31,72	2,23
e4	38,57	31,87	4,38
	39,44	31,77	2,35
e5	42,73	32,05	0,23
	40,3	32,03	1,28
e6	39,9	31,93	1,71
	39,65	31,99	2,03
e7	38,37	31,81	5,04
0.	39,73	31,88	1,92
e8	39,28	•	
60	-	32,05	2,65
- 0	39,02	31,89	3,18
e9	38,69	32,09	4,01
1	39,19	31,98	2,81
e10	40,62	31,79	1,02
1	39,18	31,92	2,84
e11	39,56	31,89	2,17
	38,09	31,86	6,15
e12	39,1	32,01	3,01
	39,2	31,6	2,79
e13	40,67	31,77	0,98
0.0	39,55	32,02	2,19
e14	39,01	31,96	3,20
014	40,25	31,68	1,33
e15			
e15	38,17	31,71	5,81
- 4.0	38,93	31,68	3,40
e16	39,69	31,67	1,97
l	41,36	31,64	0,61
e17	38,62	31,95	4,22
	41,32	31,86	0,62
e18	38,65	32,04	4,14
	38,54	31,99	4,45
e19	39,27	31,55	2,67
0.0	38,13	31,71	5,98
e20	-		
620	39,24	31,85	2,72
004	39,47	32,02	2,31
e21	38,12	32,17	6,03
1	39,76	31,93	1,88
e22	40,31	32,02	1,27
1	40,17	31,89	1,41
e23	39,48	31,93	2,30
1	40,21	31,77	1,37
e24	41,17	31,97	0,69
	39,48	32,18	2,29
e25	39,95	32,23	1,65
1020			
	40,02	32,15	1,56
e26	39,93	31,74	1,67
	42,08	32,62	0,36
e27	41,1	31,93	0,73
	42,21	32	0,33
e28	40,01	32,2	1,57
	41,14	32,01	0,71
e29	N/A	32 N/A	-,
1	38,17	32,07	5,82
e30	37,35	31,95	10,36
1000	38,08	31,97	6,19
	30,00	31,31	0,19

Contrôle Gamme Standard

Content	C(t)		I.C. C(t)	SQ	
QS1		36,21	31,82		19,00
QS1		36,42	31,93		19,00
QS2		32,65	32,13		390,00
QS2		32,35	31,98		390,00
QS3		28,99	31,86		3900,00
QS3		29,14	32,11		3900,00
QS4		25,53	32,64		39000,00
QS4		25,64	32,9		39000,00

Contrôle négatif

Content	C(t)	I.C. C(t) SQ
Neg Ctrl	N/A	32,17 N/A
Neg Ctrl	N/A	32,08 N/A

Appendix 4: Limit of quantification

Results from iQ-Check™ Quanti L. pneumophila – Extension 2011 - v01 achieved by IPL santé, environnement durables Nord

LQ à 15UG

Gamme de calibrage QS

	UG/puits	Moy Log (UG/puits)	C(t)
QS1		1,278753601	38,05
	19	1,278753601	38,52
QS2		2,591064607	33,2
	390	2,591064607	33,46
QS3		3,591064607	30,68
	3900	3,591064607	29,87
QS4		4,591064607	26,88
	39000	4,591064607	26,62

Pente	-3,451
Ordonnée origine	42,559
Corrélation (r ²)	0,995
Efficacité (%)	94,869

LQPCR à 15UG : 30 mesures en réplicat

	C(t)		UG/pu	its	
	Réplicat	Moyenne	UG/puits I	loy UG/puits	x' (Log)	Moyenne x'
_Q-1	37,93		21,9	,	1,341	
	37,94	37,94	21,7	21,8	1,338	1,340
_Q-2	37,94		21,8		1,338	
	38,31	38,12	17,0	19,4	1,231	1,285
_Q-3	37,82		23,6		1,373	
	39,09	38,45	10,1	16,9	1,005	1,189
_Q-4	38,05		20,3		1,306	
0.5	38	38,02	21,0	20,6	1,321	1,314
_Q-5	38,82 36,73	37,77	12,1 48,8	30,5	1,083 1,689	4 200
_Q-6	38,2	31,11	18,3	30,5	1,263	1,386
_Q-0	37,96	38,08	21,5	19,9	1,332	1,298
.Q-7	37,67	30,00	26,1	15,5	1,417	1,230
-0.7	37,27	37,47	34.1	30,1	1,532	1,474
.Q-8	36,48	07,47	57,5	50,1	1,761	1,777
	37,48	36,98	29,6	43,5	1,472	1,616
.Q-9	38,28	00,00	17,3	10,0	1,240	1,010
	37,76	38,02	24,6	21,0	1,390	1,315
.Q-10	38,12	, . -	19,3		1,286	,
	37,64	37,88	26,6	22,9	1,425	1,356
_Q-11	37,45	- /	30,1	- '	1,480	,
	39,25	38,35	9,1	19,6	0,959	1,219
Q-12	37,7		25,5		1,408	
	37,91	37,8	22,3	23,9	1,347	1,377
.Q-13	37,42		30,8		1,489	
	37,58	37,5	27,6	29,2	1,443	1,466
_Q-14	38,08		19,8		1,298	
	37,64	37,86	26,6	23,2	1,425	1,361
_Q-15	38,32		16,9		1,228	
	37,34	37,83	32,5	24,7	1,512	1,370
_Q-16	38,02		20,6		1,315	
	38,32	38,17	16,9	18,8	1,228	1,272
_Q-17	38,73	07.70	12,8	04.0	1,109	4 400
0.40	36,7	37,72	49,6	31,2	1,698	1,403
_Q-18	38,4 38,28	00.04	16,0 17,3	40.7	1,205	4.000
_Q-19		38,34	16,3	16,7	1,240	1,222
_Q-19	38,38 37,66	20.00	26,3	21,3	1,211 1,419	4.045
Q-20	37,00	38,02	26,3 16,5	21,3	1,419	1,315
_Q-20	37,6	37,98	27,3	21,9	1,437	1,327
Q-21	37,87	07,30	22,8	21,0	1,359	1,021
	37,36	37,62	32,0	27,4	1,506	1,432
Q-22	37,74	07,02	24,8	27,1	1,396	1,102
	39	38,37	10,7	17,8	1,031	1,214
Q-23	37,49		29,3	,•	1,469	
	37,43	37,46	30,6	30,0	1,486	1,477
Q-24	37,06	•	39,1		1,593	
	39,39	38,23	8,3	23,7	0,918	1,256
.Q-25	37,78		24,2		1,385	
	37,44	37,61	30,4	27,3	1,483	1,434
.Q-26	38,38		16,2		1,211	
	38,67	38,52	13,4	14,8	1,127	1,169
_Q-27	37,5		29,1		1,466	
	37,92	37,71	22,0	25,6	1,344	1,405
_Q-28	38,8		12,3		1,089	
	38,04	38,42	20,4	16,3	1,309	1,199
_Q-29	39,12		9,9		0,996	
	37,24	38,18	34,7	22,3	1,541	1,269
_Q-30	37,81		23,8	T	1,376	
	37,91	37,86	22,2	23,0	1,347	1,361

Moyenne x'	1,337
Ecart-type s	0,102
Biais	0,059
Exactitude de LQ ELQ	0,117
Incertitude ULQ	0,240

Appendix 5: Yield and robustness

Results from iQ-Check™ Quanti L. pneumophila – Extension 2011 - v01 achieved by IPL santé, environnement durables Nord

nent	%	230%	67 79	28%	20.0	240/	0 %	270/	0/.17	7000	2070	200%	6/07	250%	62 /9	%66	2010	28%	20.79	28%		28,		ment	0/	37%	ŝ	45%	
Rendement	log	0.63	20,0	-0.55	00'0	0.62	70,0-	0.67	10,0-	990	-0,55	0.54	5,0	0.61	0,0	-0.54	500	-0.55	20,0	-0.55		-0,56		Rendement	for	-0,43		-0,347552	
	B (log)	4 30	2,	R 15	2	2 10	0 0	6 13	2,0	E AE	0,40	5 53	2	5.46	2,4	5.53	200	5.55	200	5,55			•	D (loca)	(ROI) a	4,50		5,65	Ī
Résultat analyse	Moyenne UG/puits	5.495+02	3,435.02	3 88E±02	10000	4 10E±03	4,100,00	2 745+03	3,715+02	7 705+03	7,700=+03	0 375+03	3,015	8 00E+03	0,000	9.37F+03	20,000	9 92F+03	0,025.00	9,95E+03		Rendement moyen pour le niveau 100 000 UG/L		Résultat analyse	Moyerine Octours	8,69E+00		1,23E+02	
Résu	UG/puits	5,70E+02	5,30E+02	4,28E+02	3,52E+02	4,08E+02	4,28E+02	3,84E+02	3,59E+02	7,68E+03	7,88E+03	9,72E+03	9,03E+03	7,69E+03	8,32E+03	9,72E+03	9,03E+03	9,60E+03	1,02E+04	9,53E+03	1,04E+04	ioyen pour le n		Résu	OG/puits	8,69E+00	Z,84E+00	1,28E+02	10000
	C(t)	31,18	31,30	31,28	31,56	31,35	31,28	31,44	31,54	26,73	26,7	26,63	26,75	26,99	26,87	26,63	26,75	26,79	26,7	26,8	26,68	andement m		1170	(1)	37,91	39,7	33,04	0000
obage	A (log)	4,93		69'9		69'9		69'9		5,99		6,07		6,07		6,07		6,12		6,12		R		page	(BOI) w	4,93		5,99	
Valeur du dopage	UG/puits	5,32E+02		3,08E+04		3,08E+04		3,08E+04		6,17E+03		7,28E+03		7,28E+03		7,28E+03		8,33E+03		8,33E+03				Valeur du dopage	OG/puits	5,32E+02		6,17E+03	000
Echaptillon	ECHAININ	EC1N1W		EC2N1W		EC3N1W-100		EC4N1W-100		EC5N1W-100		EC6N1W		EC7N1W		EC8N1W		EC9N1W		EC10N1W				Echantillon		EC1N2W		EC2N2W	

Cohontillon	Valeur du dopage	lopage		Rés	Résultat analyse		Rendement	nent
Ecilaliul	UG/puits	A (log)	C(t)	UG/puits	Moyenne UG/puits	B (log)	log	%
EC1N2W	5,32E+02	4,93	37,91	8,69E+00	0 000	4 50	0.49	270/
	10 C C C C C C C C C C C C C C C C C C C		39,7	2,84E+00	0,035,00	4,30	C+'0-	27.70
EC2N2W	6,17E+03	5,99	33,04	1,28E+02	1 23E±02	5.65	0347650	45%
			33,15	1,19E+02	1,201.102	5	20071-0-0-	2
EC3N2W	7,28E+03	20'9	33,64	9,48E+01	4 005+03	6 50	0.47	240%
			33,21	1,26E+02	1,035,102	50,00	14.0	0, 10
EC4N2W	7,28E+03	6,07	33,34	1,16E+02	4 225+02	20 2	0.47	2007
			33,16	1,30E+02	1,435+02	0,00	-0,42	20%
EC5N2W	7,28E+03	6,07	33,18	1,29E+02	4 225+02	000	0.00	440/
			33,08	1,37E+02	1,335,102	0,00	60,0-	0 +
EC6N2W	7,28E+03	20'9	33,38	1,13E+02	4 945+09	E 0.4	680	/026
			33,17	1,30E+02	1,415.10	2,04	C+'0-	2/ /0
EC7N2W	8,33E+03	6,12	33,22	1,01E+02	0.645+04	623	0.67	720
			33,39	8,96E+01	9,010,101	5,55	10,0-	0/. /7
EC8N2W	8,33E+03	6,12	33,47	8,41E+01	0 595+01	5 54	99.0	270%
			33,1	1,09E+02	9,300,0	5,5	00,0	0/ /7
EC9N2W	8,33E+03	6,12	33,12	1,08E+02	1 10E±02	5.60	-0.53	30%
			33,08	1,11E+02	1,100.02	2,0	00'0	000
EC10N2W	8,33E+03	6,12	33,17	1,04E+02	1 DRE±02	5 58	P5 0-	7000
			33.13	1.08E+02	1,000,02	8,5	5,5	20.00

-0,51

-0,47

/puits	B (log)	log	%
3	4,63	-0,27	23%
8	4,52	-0,38	45%
e	4,61	-0,30	%09
e .	4,60	-0,30	%09
6	4,62	-0,31	49%
8	4,34	-0,59	26%
8	6,19	-0,50	32%
8	6,18	-0,51	31%
4	5,60	-0,39	41%
4	5,65	-0,45	35%
0 UG/L		-0,40	40%

ent	%	26%		38%	400/	40.40	40%	0 0	470/	2 7	440/	44%	/000	90.00	308/	%00	230%	0/ 00	7000	000		7000	39%			
Rendement	log	-0,59		-0,42	700	-0,34	-0.31	0,0-	0.33	00,0-	20.0	95'0-	0.53	-0,03	0.50	76'0-	0.49	0+'0-	0.46	C+,U-		0.44	-0,41			
	B (log)	4,31		4,51	30.0	0,50	6.38	00'0	26.2	00,0	E 6.4	40,0	5 67	0,0,0	02 2	00,'0	99 9	9	09 9	00,0				,		
Résultat analyse	Moyenne UG/puits	5,66E+02		1,02E+01	7 035 100	1,035,102	7 55E±02	7,305,102	7 20E+03	1,405,102	4 365+00	1,30E+02	4 475+00	1,175702	4 405 400	1,195+02	1 395+03	1,305,102	4 405+03	1,495.102		1000	Kendement moyen pour le niveau 1 000 UG/L			
Rési	UG/puits	6,26E+02	1 025+04	5.84E+00	7,48E+02	6,60E+02	7,71E+02	7,39E+02	7,26E+02	7,13E+02	1,36E+02	1,36E+02	1,15E+02	1,19E+02	1,14E+02	1,23E+02	1,57E+02	1,22E+02	1,49E+02	1,48E+02			moyen pour			
	C(t)	30,69	37.65	38.55	30,48	30,66	30,43	30,5	30,52	30,55	32,94	32,93	33,03	32,99	33,04	32,94	32,60	32,95	32,67	32,68		7	Kendement			
age	(log)	4,90	4 03	6,	69'9		69'9		69'9		5,99		6,12		6,12		6,12		6,12							

nitaire	
Sa	
qe	
hau	
\overline{O}	
Eau	
sse	
ste	
opr	
Œ	

Protocole Aquadien W2

Rendement et Robustesse

Protocole Aquadien W2

Robustesse Tour Aéroréfrigérante

pneumophila

Protocole Aquadien

Rendement	% fol (6	200%	t 00	200%	t	218	0,0-	7 0.49 32%	r.	928/	n 10-1-10-10-10-10-10-10-10-10-10-10-10-10	0.47	14,0	/800	20,0	94%	2	22%	00,0	
Résultat analyse	Moyenne UG/puits B (log)	9 07E+03 E 46		4 06 1104		4 445+04		1 175+04 6 67		4 405+04		4 32E+04		1 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 235+04 5 59		1 325±04		
Résult	C(t) UG/puits N	26,48 9,03E+03	26,51 8,91E+03	26,57 1,01E+04	26,45 1,10E+04	26,41 1,13E+04	26,39 1,14E+04	26,39 1,14E+04	26,32 1,20E+04	26,3 1,21E+04	26,36 1,16E+04	26,36 1,30E+04	26,31 1,35E+04	26,61 1,09E+04	26,54 1,15E+04	26,45 1,22E+04	26,44 1,23E+04	26,37 1,30E+04	26,31 1,35E+04	26.24 4.2E±04
Valeur du dopage	UG/puits A (log)	6,17E+03 5,99		7,28E+03 6,07		7,28E+03 6,07		7,28E+03 6,07		7,28E+03 6,07		8,33E+03 6,12		8,33E+03 6,12		8,33E+03 6,12		8,33E+03 6,12		0 225±02
Poboatillos	Ediamon	T1N1		T2N1		T3N1		T4N1		T5N1		T6N1		17N1		T8N1		T9N1		T10N1

31%

7,35E+02

5,32E+02

5N1W

7N1W 8N1W

9,49E+03 1,00E+04

7,95E+03

29% 29%

32% 30%

32% %98

-0,49 -0,45 -0,50 -0,52 -0,51 -0,54 -0,53 -0,51

4,41 4,45 4,41 4,38 4,42 5,46 5,53 5,56 5,54 5,60

7,09E+02 7,91E+02 7,07E+02 6,73E+02 31%

28% 35%

9,67E+03

8,33E+03

710N1W

-0,56

-0,51

Rendement moyen pour le niveau 100 000 UG/L

44% 34% 38% 39% 47% 29% 27% 29% 32%

5,64 5,59 5,65 99'9 5,74 5,56 5,53 5,58 5,63

-0,47

1,08E+02 1,23E+02 -0,40 -0,33 -0,54 -0,57 -0,54 -0,49

1,51E+02

1,01E+02 9,44E+01

8,33E+03

1,27E+02

1,06E+02

27%

-0,57 -0,36

1N2W

3N2W 4N2W 5N2W 6N2W 7N2W 8N2W 9N2W

-0,51 31%	
Rendement moyen pour le niveau 100 000 UG/L	

-0,51

																		_			
ment	%	85%	8/ 80	050/	92.76	2007	9/ 00	/023	% /0	4420/	0.51	100%	9/ 60	1000	92020	/003	%00	EE0/	02.00	400/	49.70
Rendement	log	-0.07	0,0	000	-0,02	30.0	-0,20	0 10	9,	0.05	60,0	0.33	-0,23	30.0	-0,23	000	-0,22	90.0	-0,20	100	-0,5
	B (log)	4 84	5	4 99	4,00	4.67	6,4	4.70	4,12	4 05	06,4	6.47	t.o	0 44	#,0	2 47	4,0	6 43	24,0	00 2	0,03
Résultat analyse	Moyenne UG/puits	2 15E+01	2, 12, 13	2 205+04	2,395+01	1 485+04	10+30+1	1 655 104	10+300,1	2 045 104	2,015701	0 425+02	3,125.102	0 0 0 0 0 0	0,035+02	CO+30C 0	3,305,102	0 475400	0,425,102	4 545 100	1,515+02
Rési	UG/puits	1,16E+01	2,15E+01	1,41E+01	2,39E+01	2,23E+01	9,60E+00	1,70E+01	1,61E+01	2,81E+01	6,33E+00	9,27E+02	8,98E+02	8,56E+02	8,73E+02	7,76E+02	1,11E+03	8,02E+02	8,83E+02	1,56E+02	1.47E+02
	C(t)	36,67	35,72	36,37	35,56	36,39	37,75	36,29	36,38	35,51	37,83	30,17	30,21	30,28	30,26	30,43	29,9	30,36	30,22	32,72	32.82
bage	A (log)	4,91		4,91		4,93		4,90		4,90		69'9		69'9		69'9		69'9		5,99	
Valeur du dopage	UG/puits	5,04E+02		5,04E+02		5,32E+02		4,96E+02		4,96E+02		3,08E+04		3,08E+04		3,08E+04		3,08E+04		6,17E+03	
T. Charles	Echanullon	T1N2		T2N2		T3N2		T4N2		T5N2		T6N2		T7N2		T8N2		T9N2		T10N2	

NZ	NG/L	
iveau	000	
z	-	

2	3/L
an	ĭ
ive	00

Niveau N1 100 000 UG/L

AFNOR Validation by **AFNOR** Certification Summary report iQ-Check™Legionella

-0,34

-0,17

Rendement moyen pour le niveau 1 000 UG/L

Rendement moyen Tour aéroréfrigérante Aquadien

Rendement moyen Tour aéroréfrigérante Aquadien W2

-0,47

-0,49

Robustesse Eau Minérale

Protocole Aquadien

Valeu	Echanumon UG/puits	M1N1 4,96E+02		M2N1 4,96E+02		M3N1 5,04E+02		M4N1 5,04E+02		M5N1 5,32E+02		M6N1-100 3,08E+04		M7N1-100 3,08E+04		M8N1 6,17E+03		M9N1 7,28E+03		M10N1 7,28E+03	
Valeur du dopage	s A (log)	+02 4,90		+02 4,90		+02 4,91		+02 4,91		+02 4,93		+04 6,69		+04 6,69		+03 5,99		+03 6,07		+03 6,07	
	C(t)	29,54	29,7	29,58	29,62	29,54	29,41	30'08	29,22	29,77	29,81	31,02	31,44	31,22	31,59	25,9	25,86	26,05	26,16	26,15	1000
Rés	UG/puits	1,31E+03	1,19E+03	1,28E+03	1,25E+03	1,20E+03	1,32E+03	8,65E+02	1,49E+03	1,37E+03	1,34E+03	5,13E+02	3,84E+02	4,46E+02	3,47E+02	1,32E+04	1,36E+04	1,43E+04	1,33E+04	1,34E+04	10.11.0
Résultat analyse	Moyenne UG/puits	1 255 ±02	1,435,103	4 365+03	1,205+03	1 265+03	-	4 445+03		1 265+03	1,305,103	4 445+02	4,445,102	3 03 0 + 03	3,335,102	1345+04	10.745	1 395+04	1,300-104	4 475 . 04	+0+U/+'-
	B (log)	4 60	00,4	4 64	0,4	1 61	- - - -	4 56	4,30	1 64	to't	2 4 5	0,10	6 10	o, o	5 63	20,0	E 6.4	to,0	E 0.7	0,0
Rendement	log	06.0	00,0-	00.0	-0,29	0.30	00,0-	36.0	00'0-	96.0	-0,29	0.64	t 0'	0 60	60,0-	9E U	00'0-	CFU	24,0-	00.0	-0,03
aut	%	2007	900	240/	0/10	2007	000	450/	0/04	510/	9	/000	0/.67	7000	0/07	130%	12.70	7000	000	4004	0/0

AFNOR

38% 36% 39% 29% 33% 34% 35% 35%

-0,42

4,49 4,52

8,49E+02

-0,44

4,47 4,52 5,46 5,59 5,60

8,12E+02 9,14E+02 7,98E+03

5,04E+02

M4N1W

-0,41 -0,54

45%

-0,38

-0,37

4,53

Protocole Aquadien W2

				ò			0	ľ
Echaptillon	Valeur du dopage	dopage		Kes	Resultat analyse		Kendement	emen
Collandia	UG/puits	A (log)	C(t)	UG/puits	Moyenne UG/puits	B (log)	log	
M1N2W	6,17E+03	5,99	33,61	8,80E+01	0.705.04	6 64	0.45	20
			33,3	1,08E+02	9,735+01	0,04	-0,43	,
M2N2W	7,28E+03	6,07	33,99	7,51E+01	9 005+04	E E4	23.0	č
			33,48	1,06E+02	0,900,00	0,0	00'0-	•
M3N2W	7,28E+03	6,07	31,52	3,86E+02	2 055+03	5 07	00.0	63
			33,43	1,09E+02	2,035+02	0,07	-0,20	
M4N2W	7,28E+03	6,07	33,47	1,06E+02	4 425+03	10.4	0.46	2
			33,3	1,19E+02	1,125.102	0,0	0+'0-	•
M5N2W	7,28E+03	20'9	33,19	1,28E+02	1 185+02	6.83	0.45	36
			33,49	1,05E+02	1,105.102	20,02	24.0	•
M6N2W	8,33E+03	6,12	33,45	8,54E+01	0 055 +04	E E4	0 50	30
			33,32	9,39E+01	0,935.40	0,0	60'0-	`
M7N2W	7,17E+03	90'9	33,2	1,02E+02	0 025+04	25 25	0.64	24
			33,26	9,70E+01	9,325,101	0,0	5,5	•
M8N2W	7,17E+03	90'9	33,14	1,06E+02	0 000 +04	33 3	0.64	,
			33,34	9,22E+01	9,000,101	0,00	10,0-	•
M9N2W	7,17E+03	90'9	33,12	1,07E+02	1 055+02	6 59	67.0	22
			33,17	1,03E+02	1,005.102	0,00	64.0	,
M10N2W	7,17E+03	90'9	33,02	1,14E+02	1115±02	5.60	-0.46	25
			33,12	1,07E+02	1,111,02	0,0	P.	•

5% 8% 8% 8% 6% 6% 11% 11% 14%

-0,44

Rendement moyen pour le niveau 100 000 UG/L

-0,38

Rendement moyen pour le niveau 100 000 UG/L

-0,46

5,61

7,28E+03

-0,46

5,64

-0,48

-0,45

Rendement moyen Eau minérale Aquadien W2

-0,28

Rendement moyen Eau minéarle Aquadien

-0,18

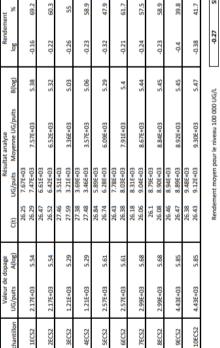
Rendement moyen pour le niveau 1 000 UG/L

-0,47

Rendement moyen pour le niveau 1 000 UG/L

Frhantillon	Valeur du dopage	lopage		Rési	Résultat analyse	1	Rendement	ment
Collandin	UG/puits	A (log)	C(t)	UG/puits	Moyenne UG/puits	B (log)	log	%
M1N2	4,96E+02	4,90	35,43 N/A	2,97E+01 N/A	2,97E+01	4,98	0,08	120%
M2N2	4,96E+02	4,90	35,05 35,64	3,79E+01 2,60E+01	3,14E+01	5,00	0,10	126%
M3N2	5,04E+02	4,91	34,84	3,83E+01 2,37E+01	3,01E+01	4,98	80'0	120%
M4N2	5,04E+02	4,91	35,55 35,08	2,41E+01 3,26E+01	2,80E+01	4,95	0,05	111%
M5N2	5,32E+02	4,93	37,31 N/A	1,26E+01 N/A	1,26E+01	4,61	-0,32	47%
M6N2	3,08E+04	69'9	29,96 30,04	1,07E+03 1,01E+03	1,04E+03	6,52	-0,17	%89
M7N2	3,08E+04	69'9	30,05	1,01E+03 8,76E+02	9,39E+02	6,48	-0,21	61%
M8N2	6,17E+03	5,99	32,99	1,32E+02 1,30E+02	1,31E+02	5,62	-0,37	42%
M9N2	8,33E+03	6,12	33,1 33,03	1,09E+02 1,15E+02	1,12E+02	5,56	-0,54	78%
M10N2	8,33E+03	6,12	32,84	1,32E+02 1,16E+02	1,24E+02	2,60	-0,50	31%

Niveau N1 100 000 UG/L


Upscience

Niveau N2 1 000 UG/L

Robustesse Eau chaude sanitaire

* t	61.7	31.6	97.9	61.7	7.76	89.1	39.8	50.1	60.3	57.5	61.7		ж	70.8	2		8	57.5	55	52.5	55	46.8	41.7	543	*	
Rendement log	-0.21	-0.5	-0.17	-0.21	-0.01				-0.22	-0.24	-0.23	Rendement	gol	-0.18					-0.26		-0.26	-0.33	-0.38	76.0	-0.50	
B(log)	3.69	3.4	3.56	3.52	3.88	3.84	3.45	3.55	3.53	3.51	J v		B(log)	29'5	87		5.6	5.52	5.5	5.48	5.5	5.47	5.42		ا ا	
Résultat analyse s Moyenne UG/puits	1.37E+02	7.04E+01	1.01E+02	9.30E+01	2.13E+02	1.94E+02	7.86E+01	9.94E+01	9.40E+01	8.91E+01	Rendement moyen pour le niveau 1 000 UG/L	Résultat analyse	Moyenne UG/puits	1.30£+04	1 055+04	******	1.10E+04	9.26E+03	8.77E+03	8.48E+03	8.86E+03	8.21E+03	7.36E+03	Bandamant maura a naur la nivasa 100 000 115/1	o ooo oot appaalii ai in	
Résulta UG/puits N	1.44E+02 1.29E+02	8.80E+01 5.28E+01	1.03E+02 9.83E+01	1.15E+02 7.06E+01	1.94E+02 2.32E+02	1.90E+02 1.97E+02	7.63E+01 8.10E+01	9.25E+01 1.06E+02	8.14E+01 1.07E+02	9.18E+01 8.65E+01	ment moyen po	Résulta	UG/puits N	1.38E+04 1.21E+04	1.07E+04	1.08E+04	1.11E+04 1.09E+04	8.84E+03 9.67E+03	9.26E+03 8.29E+03	8.53E+03 8.44E+03	8.94E+03 8.79E+03	7.97E+03 8.45E+03	7.40E+03 7.33E+03	ou conom too	ellt illögen por	
C(t)	32.45	33.17	32.5 32.56	32.35	32.26	32.29	33.01	32.74	32.78	32.61	Render		C(t)	25.83	26.2	26.19	26.16	26.22	26.15	26.21	26.13	26.14	26.25	mobrod	Vene	
dopage A(log)	3.9	3.9	3.73	3.73	3.89	3.89	3.85	3.85	3.75	3.75	•	dopage	A(log)	5.85	8		2 86	5.76	5.76	5.76	5.76	5.8	5.8			
Valeur de dopage UG/puits A(log	4.97E+01	4.97E+01	3.32E+01	3.32E+01	4.84E+01	4.84E+01	4.43E+01	4.43E+01	3.52E+01	3.52E+01	Protocol	Valeur de dopage	UG/puits	4.43E+03	4.435+03	00.300	4.48E+03	3.63E+03	3.63E+03	3.57E+03	3.57E+03	3.96E+03	3.96E+03			
Echantillon	1ECS1W	2ECS1W	3ECS1W	4ECS1W	SECSIW	6ECS1W	7ECS1W	8ECS1W	9ECS1W	10ECS1W	W2 Short Protocol		Echantillon	1ECS2W	3ECC3W	100000	4FCS2W	SECS2W	6ECS2W	7ECS2W	8ECS2W	9ECS2W	10ECS2W			

ent	Ŗ	53.7	60.3	33.1		7.97	53.7		1.09	46.8		46.8		38	Γ	33.1	46.0	ent %		69.2		60.3		çç	58.9		47.9		61.7		57.5	
Rendement	go	-0.27	-0.22	-0.48		-0.55	-0.27		-0.18	-0.33		-0.33		-0.42		-0.48	-0.35	Rendement	9	-0.16		-0.22		-0.26	-0.23		-0.32		-0.21		-0.24	
1	B(10g)	3.31	3.36	3.11		3.04	3.39		3.48	3.53		3.53		3.48		3.42	3/1	R(loe)	(00.)	5.38		5.32		5.03	5.06		5.29		5.4		5.44	_
Résultat analyse	Moyenne UG/purts	6.37E+01	7.11E+01	4.05E+01		3.43E+01	7.62E+01		9.55E+01	1.05E+02		1.05E+02		9.42E+01		8.15E+01	Rendement mayen pour le niveau 1 000 UG/L	Résultat analyse s Movenne LIG/nuits		7.57E+03		6.52E+03		3.35E+U3	3.57E+03		6.09E+03		7.91E+03		8.67E+03	
Sul	UG/puits N	6.37E+01	7.03E+01 7.20E+01	3.42E+01 4.68E+01	3.76E+01	5.11E+01 6.10E+01	9.04E+01	8.03E+01	1.11E+02	1.07E+02 1.03E+02	1.22E+02	8.77E+01	9.59E+01	9.26E+01	8.07E+01	8.22E+01	ment moyen po	Résulta HG/nuite A		7.47E+03	6.61E+03	6.42E+03	3.51E+03	3.215+03	3.69E+03 3.46E+03	5.89E+03	6.28E+03	7.78E+03	8.03E+03	8.31E+03	9.04E+03	8.79E+03
1470	C(t)	33.5	33.35	34.45	34.31	33.5	32.95	33.12	32.65	32.68	32.48	32.97	33.05	33.1	33.29	33.27	Rende	C(t)	36.36	26.29	26.47	26.52	27.46	67.29	27.38	26.84	26.74	26.43	26.38	26.18	26.06	26.1
dopage	A(log)	3.58	3.58	3.59		3.59	3.66		3.55	3.86		3.86		3.9		3.9	ocol	dopage Afloe1	(Go.)	5.54		5.54		5.29	5.29		5.61		5.61		5.68	_
Valeur de dopage	UG/puits	2.38E+01	2.38E+01	2.43E+01		2.43E+01	2.84E+01		2.84E+01	4.56E+01		4.56E+01		4.97E+01		4.97E+01	Aquadien Short Protocol	Valeur de dopage		2.17E+03		2.17E+03		1.21E+03	1.21E+03		2.57E+03		2.57E+03		2.99E+03	
	Echantillon	1ECS1	2ECS1	3ECS1		45(.51	SECS1		beCS1	7ECS1		8ECS1		9ECS1		10ECS1	Aquad	Erhantillon		1ECS2		2ECS2		3ECS2	4ECS2		SECS2		6ECS2		7ECS2	

Echantillon	Valeur de dopage UG/puits A(log	dopage A(log)	C(t)	Résu UG/puits	Résultat analyse ts Moyenne UG/puits	B(log)	Rendement	ment %
			33.12	8.21E+01				
1ECS1F	2.38E+01	3.58	32.88	9.61E+01	8.91E+01	3.51	-0.07	85.1
SECCIE	3 385+01	3 50	33.45	6.58E+01	6 755+01	3 30	010	9 89
1000	707007	25.5	33 55	6.21E±01	0.025.07	55.5	6	e e
3ECS1F	2.43E+01	3.59	33.39	6.91E+01	6.56E+01	3.37	-0.22	60.3
			33.19	7.88E+01				
4ECS1F	2.43E+01	3.59	33.33	7.21E+01	7.55E+01	3.43	-0.16	69.2
			33.69	5.46E+01				
SECS1F	2.84E+01	3.66	33.43	6.50E+01	5.98E+01	3.33	-0.33	46.77
2000	2045.04	33 6	32.96	8.99E+01	10.707.0	73.0		200
	1017107	200	33.74	7.34F+01	10.700.0	5		657
7ECS1F	4.56E+01	3.86	32.69	1.06E+02	8.99E+01	3.51	-0.35	44.7
			32.47	1.23E+02				
8ECS1F	4.56E+01	3.86	32.72	1.04E+02	1.13E+02	3.61	-0.25	56.2
	-		32.86	1.09E+02		-	-	1
SECSIF	4.9/E+01	3.9	32.33	1.335+02	1.22E+02	3.54	-0.26	S
10ECS1F	4.97E+01	3.9	33.22	8.59E+01	1.03E+02	3.57	-0.33	46.8
FDRS Shor	FDRS Short Protocol		Render	ment moyen	Rendement moyen pour le niveau 1 000 UG/L	1/9/	-0.23	60.5
	Valeur de dopage	dopage		Résu	Résultat analyse		Rendement	ment
Echantillon	UG/puits	A(log)	C(t)	UG/puits	Moyenne UG/puits	B(log)	Bol	%
15/5/5	2 175+03	6 54	27.04	4.55E+03	A 46F±03	5.31	0 33	46.8
100	2017		37.36	3 695+03	4.405.00	77.7	55.0	
2ECS2F	2.17E+03	5.54	27.38	3.65E+03	3.66E+03	5.12	-0.42	38
			27.69	3.00E+03				
3ECS2F	1.21E+03	5.29	27.78	2.83E+03	2.92E+03	5.02	-0.27	53.7
AECESE	1 315.03	6.30	27.82	2.77E+03	2 675-03	4 00	0.31	90
			26.57	7.08E+03		8		2
SECS2F	2.57E+03	5.61	26.45	7.65E+03	7.37E+03	5.42	-0.19	64.6
			26.83	5.92E+03				
6ECS2F	2.57E+03	5.61	26.86	5.78E+03	5.85E+03	5.32	-0.29	51.3
30000	2001	8	26.05	9.09E+03	00.101.0		,	6
/EUSZF	Z.39E+U3	2.b8	20.02	9.205+03	9.19E+03	25.5	-0.16	2.60
8ECS2F	2.99E+03	5.68	25.93	9.85E+03	9.46E+03	5.53	-0.15	70.8
			26.23	1.05E+04				
9ECS2F	4.43E+03	5.85	26.1	1.15E+04	1.10E+04	9.6	-0.25	56.2
			26.33	9.76E+03				
10ECS2F	4.43E+03	5.85	26.37	9.53E+03	9.65E+03	5.54	-0.31	49
			Rendem	ent moyen p	Rendement moyen pour le niveau 100 000 UG/L	NG/L	-0.27	54.9
		Rendement n	noyen Eau chau	ude sanitaire	Rendement moyen Eau chaude sanitaire FDRS Short Protocol		-0.25	27.7

Robustesse Eau minérale

_	_				_																				
nent %	ŧ	63.1	53.7	67.6	26.9	67.6	44.7	55	25.7	57.5	60.3	52.2	nent %	57.5	58.9	60.3	51.3	56.2	50.1	61.7	46.8	41.7	56.2	54.1	53.1
Rendement	8	-0.2	-0.27	-0.17	-0.57	-0.17	-0.35	-0.26	-0.59	-0.24	-0.22	-0.30	Rendement	-0.24	-0.23	-0.22	-0.29	-0.25	-0.3	-0.21	-0.33	-0.38	-0.25	-0.27	-0.29
B/log)	190ah	3.7	3.63	3.56	3.16	3.72	3.54	3.59	3.26	3.51	3.53] 1/9	B(log)	5.61	5.62	5.64	5.57	5.51	5.46	5.55	5.43	5.42	5.55	1/5/	
Résultat analyse s Movenne UG/puits	cod for a make	1.39E+02	1.18E+02	1.01E+02	4.04E+01	1.46E+02	9.69E+01	1.07E+02	5.01E+01	9.05E+01	9.45E+01	Rendement moyen pour le niveau 1 000 UG/L	Résultat analyse s Moyenne UG/puits	1.126+04	1.15E+04	1.20E+04	1.03E+04	9.03E+03	8.07E+03	9.82E+03	7.41E+03	7.36E+03	9.92E+03	Rendement mayen pour le niveau 100 000 UG/L	hort Protocol
Résulta UG/ouits A	6	1.49E+02	9.98E+01 1.36E+02	9.14E+01 1.11E+02	4.68E+01 3.41E+01	1.31E+02 1.60E+02	8.25E+01 1.11E+02	1.30E+02 8.50E+01	4.37E+01 5.65E+01	1.04E+02 7.71E+01	1.07E+02 8.19E+01	nent moyen po	Résulta UG/puits N	1.10E+04 1.14E+04	1.16E+04 1.14E+04	1.22E+04 1.19E+04	1.04E+04 1.01E+04	9.36E+03 8.71E+03	8.66E+03 7.48E+03	9.60E+03 1.00E+04	7.74E+03 7.09E+03	7.40E+03 7.33E+03	9.72E+03 1.01E+04	ent moyen pou	minérale W2 S
C(t)	32.62	32.4	32.99	32.66	33.57	32.88	33.61	3225 3286	33.82	32.43	32.4 32.79	Render	C(t)	26.15	26.08	26.03	26.24 26.28	26.13 26.25	26.26 26.49	26.03	26.34	26.25	25.85	Rendem	Rendement moyen Eau minérale W2 Short Protocol
dopage Aflog)	/Soile	3.9	3.9	3.73	3.73	3.89	3.89	3.85	3.85	3.75	3.75		dopage A(log)	5.85	5.85	5.86	5.86	5.76	5.76	5.76	5.76	5.8	5.8		Rendem
Valeur de dopage UG/puits Allog	end/oo	4.97E+01	4.97E+01	3.32E+01	3.32E+01	4.84E+01	4.84E+01	4.43E+01	4.43E+01	3.52E+01	3.52E+01	Protocol	Valeur de dopage UG/puits A(log	4.43E+03	4.43E+03	4.48E+03	4.48E+03	3.63E+03	3.63E+03	3.57E+03	3.57E+03	3.96E+03	3.96E+03		
Frhantillon		1EMI1W	2EMI1W	3EMI1W	4EMI1W	SEMIIW	6EMI1W	7EMI1W	8EMI1W	9EMI1W	10EMI1W	W2 Short Protocol	Echantillon	1EMI2W	2EMI2W	3EMI2W	4EMI2W	SEMI2W	6EMI2W	7EMI2W	8EMI2W	9EMI2W	10EMI2W		
	_				•									•											
ent %	ŧ	49	61.7	29.5	42.7	66.1	57.5	40.7	39.8	39.8	37.2	46.4	ent %	685	55	45.7	40.7	38.9	46.8	51.3	52.5	38.9	45.7	47.4	46.9
Rendement	9	-0.31	-0.21	-0.53	-0.37	-0.18	-0.24	-0.39	-0.4	-0.4	-0.43	-0.35	Rendement	-0.23	-0.26	-0.34	-0.39	-0.41	-0.33	-0.29	-0.28	-0.41	-0.34	-0.33	-0.34
B(log)	2000	3.27	3.37	3.06	3.22	3.48	3.42	3.47	3.46	3.5	3.47	1/91	B(log)	5.31	5.28	4.95	4.9	5.2	5.28	5.39	5.4	5.44	5.51	UG/L	
Résultat analyse ts Movenne UG/puits	observe on born	5.87E+01	7.29E+01	3.59E+01	5.18E+01	9.65E+01	8.18E+01	9.28E+01	9.02E+01	9.99E+01	9.12E+01	Rendement moyen pour le niveau 1 000 UG/L	Résultat analyse ts Moyenne UG/puits	6.39E+03	5.90E+03	2.82E+03	2.49E+03	4.92E+03	5.95E+03	7.70E+03	7.90E+03	8.62E+03	1.02E+04	Rendement mayen pour le niveau 100 000 UG/L	Rendement moyen Eau minérale Aquadien Short Protocol
Résulta UG/puits A	1	6.25E+01	8.04E+01 6.54E+01	3.68E+01 3.51E+01	5.14E+01 5.22E+01	1.00E+02 9.31E+01	8.37E+01 8.00E+01	8.77E+01 9.79E+01	8.97E+01 9.07E+01	1.12E+02 8.76E+01	8.18E+01 1.01E+02	nent moyen po	Résulta UG/puits A	m m	5.96E+03 5.84E+03	2.78E+03 2.86E+03	2.49E+03 2.48E+03	4.81E+05 5.02E+03	5.60E+03 6.31E+03	7.91E+03 7.50E+03	8.19E+03 7.20E+03	8.54E+03 8.71E+03	1.02E+04 1.03E+04	ent moyen po	iérale Aquadie
C(t)	33.73	33.53	33.15	34.35	33.84	32.8 32.91	33.06	32.97	32.94	32.82	33.28 32.97	Render	C(t)	26.55	26.63	27.81	27.98	27.13	26.91	26.26	26.21	26.53	26.27 26.26	Rendem	moyen Eau min
dopage A(log)	(Soular	3.58	3.58	3.59	3.59	3.66	3.66	3.86	3.86	3.9	3.9	ocol	dopage A(log)	5.54	5.54	5.29	5.29	5.61	5.61	5.68	5.68	5.85	5.85		Rendement
Valeur de dopage UG/puits Allog	cond foo	2.38E+01	2.38E+01	2.43E+01	2.43E+01	2.84E+01	2.84E+01	4.56E+01	4.56E+01	4.97E+01	4.97E+01	idien Shart Protacol	Valeur de dopage UG/puits A(log	2.17E+03	2.17E+03	1.21E+03	1.21E+03	2.57E+03	2.57E+03	2.99E+03	2.99E+03	4.43E+03	4.43E+03		

Rendement	R	45.7	30.2		57.5	20.8		46.77		35.5		38.1	61.7		87.1	53.7	52.7
Rend	BOI	-0.34	25:0-		-0.24	-0.15		-0.33		-0.45		-0.42	-0.21		-0.06	-0.27	-0.30
1000	B(log)	3.24	3.06		3.35	3.44		3.33		3.21		3.44	3.65		3.84	3.63	ng/r
Résultat analyse	Moyenne UG/puits	4.87E+01	3.16F+01		6.19E+01	7.77F+01		5.89E+01		4.51E+01		7.66E+UI	1.23E+02		1.92E+02	1.28E+02	Rendement moyen pour le niveau 1 000 UG/L
Sul	0G/purts IV 4 98F+01	4.76E+01	3.10E+01 3.23E+01	6.10E+01	6.28E+01	7.51E+01 7.92E+01	5.97E+01	5.80E+01	4.03E+01	4.98E+01	6.83E+01	0.436401	1.29E+02 1.17E+02	1.85E+02	1.99E+02	1.33E+02 1.22E+02	nent moyen po
100	33.87	33.94	34.59	33.58	33.53	33.26	33.56	33.6	34.13	33.82	33.35	23.02	32.54	32.09	31.98	32.57	Render
agedop	A(log)	3.58	3.58		3.59	3.50		3.66		3.66	000	3.80	3.86		3.9	3.9	
Valeur de dopage	ne/bnits	2.38E+01	2.38F+01		2.43E+01	2 43F+01		2.84E+01		2.84E+01	0.101	4.5bE+UI	4.56E+01		4.97E+01	4.97E+01	t Protocol
	Echantillon	1EMI1F	2FMI1F		3EMI1F	4FMI1F		SEM11F		6EMI1F		/EMITE	8EMI1F		9EMI1F	10EM11F	FDRS Short Protocol

Results from iQ-Check™ Quanti L. pneumophila – Extension 2020 - achieved by AdGène

						K	ומכ	นรับ	es	se	Iou	Γć	16	ero	те	Trig	gei	ar	ıτe						
ent %	50.1	46.8	66.1	40.7	63.1	50.1	39.8	57.5	91.2	83.2	58.9	ient	%	44.7	60.3	46.8	57.5	53.7	47.9	42.7	55	37.2	45.7	49.2	240
Rendement	-0.3	-0.33	-0.18	-0.39	-0.2	-0.3	-0.4	-0.24	-0.04	-0.08	-0.25	Rendement	gol	-0.35	-0.22	-0.33	-0.24	-0.27	-0.32	-0.37	-0.26	-0.43	-0.34	-0.31	0.00
B(log)	3.6	3.54	3.55	3.34	3.69	3.59	3.45	3.61	3.71	3.67	2/1		B(log)	5.5	5.63	5.53	5.62	5.49	5.44	5.39	5.5	5.37	5.46	1/5/	
Résultat analyse ss Moyenne UG/puits	1.10E+02	9.63E+01	9.95E+01	6.15E+01	1.36E+02	1.09E+02	7.85E+01	1.12E+02	1.42E+02	1.29E+02	Rendement moyen pour le niveau 1 000 UG/L	Résultat analyse	Moyenne UG/puits	8.87E+03	1.18E+04	9.44E+03	1.16E+04	8.59E+03	7.73E+03	6.89E+03	8.85E+03	6.47E+03	8.00E+03	Rendement moyen pour le niveau 100 000 UG/L	Dandomant mousa Tour sáraráfriaársata W.J. Chart Brotocal
Résult UG/puits	9.86E+01 1.22E+02	9.37E+01 9.90E+01	8.10E+01 1.18E+02	5.86E+01 6.44E+01	1.11E+02 1.61E+02	1.14E+02 1.04E+02	6.99E+01 8.72E+01	1.12E+02 1.12E+02	1.32E+02 1.51E+02	1.32E+02 1.25E+02	ment moyen p	Résult	UG/puits	7.72E+03 1.00E+04	1.19E+04 1.17E+04	9.43E+03 9.44E+03	1.17E+04 1.15E+04	8.60E+03 8.57E+03	7.81E+03 7.65E+03	6.62E+03 7.15E+03	8.93E+03 8.77E+03	6.51E+03 6.44E+03	8.20E+03 7.80E+03	nent moyen po	Cancelalation
C(t)	33.01 32.7	33.08	32.83	33.27	33.14	33.11	33.14	32.45	32.08	32.08	Rende		C(t)	26.67 26.29	26.05	26.37	26.08	26.27	26.42	26.56	26.13	26.43	26.1	Renden	Action Tours
dopage A(log)	3.9	3.9	3.73	3.73	3.89	3.89	3.85	3.85	3.75	3.75	•	dopage	A(log)	5.85	5.85	5.86	5.86	5.76	5.76	5.76	5.76	5.8	5.8		Dondomon
Valeur de dopage UG/puits A(log	4.97E+01	4.97E+01	3.32E+01	3.32E+01	4.84E+01	4.84E+01	4.43E+01	4.43E+01	3.52E+01	3.52E+01	Protocol	Valeur de dopage	UG/puits	4.43E+03	4.43E+03	4.48E+03	4.48E+03	3.63E+03	3.63E+03	3.57E+03	3.57E+03	3.96E+03	3.96E+03		
Echantillon	1TAR1W	2TAR1W	3TAR1W	4TAR1W	STAR1W	6TAR1W	7TAR1W	8TAR1W	9TAR1W	10TAR1W	W2 Short Protocol		Echantillon	1TAR2W	2TAR2W	3TAR2W	4TAR2W	STAR2W	6TAR2W	7TAR2W	8TAR2W	9TAR2W	10TAR2W		

ALINOK	AFNOR								
		Valeur de dopage	dopage		Résu	Résultat analyse		Rendement	ment
V	Echantillon	UG/puits	A(log)	C(t)	UG/puits	Moyenne UG/puits	B(log)	log	%
O				34.27	3.82E+01				
ιΠ	1TAR1	2.38E+01	3.58	34.24	3.89E+01	3.86E+01	3.09	-0.49	32.4
u				33.81	5.19E+01				
a	2TAR1	2.38E+01	3.58	33.75	5.38E+01	5.28E+01	3.23	-0.35	44.7
ιī				34.43	3.48E+01				
JI	3TAR1	2.43E+01	3.59	34.73	2.85E+01	3.16E+01	3.01	-0.58	26.3
Т				33.56	6.15E+01				
	4TAR1	2.43E+01	3.59	33.49	6.44E+01	6.30E+01	3.3	-0.29	51.3
U				32.91	9.28E+01				
y	5TAR1	2.84E+01	3.66	32.8	1.00E+02	9.65E+01	3.49	-0.17	9.79
				32.95	9.03E+01				
7	6TAR1	2.84E+01	3.66	32.61	1.14E+02	1.02E+02	3.51	-0.15	70.8
١T				32.53	1.18E+02				
Т	7TAR1	4.56E+01	3.86	32.43	1.26E+02	1.22E+02	3.59	-0.27	53.7
V				32.29	1.38E+02				
,	8TAR1	4.56E+01	3.86	32.5	1.20E+02	1.29E+02	3.62	-0.24	57.5
/				33.05	9.57E+01				
	9TAR1	4.97E+01	3.9	32.95	1.02E+02	9.89E+01	3.5	-0.4	39.8
				32.69	1.22E+02				
	10TAR1	4.97E+01	3.9	32.67	1.24E+02	1.23E+02	3.6	-0.3	50.1
6									
F	Aqua	Aquadien Short Protocol	col	Rend	ement moyen	Rendement moyen pour le niveau 1 000 UG/L	G/L	-0.32	49.4
\exists									
		Valeur de dopage	dopage		Résu	Résultat analyse		Rendement	ment
	Echantillon	UG/puits	A(log)	C(t)	UG/puits	Moyenne UG/puits	B(log)	gol	%
				6 46	4 NGE+03				

V0 July 2023

38

Certification Summary report

iQ-Check™ Legionella pneumophila

	Valeur de dopage	dopage		Résu	Résultat analyse		Rendement	nent
chantillon	UG/puits	A(log)	C(t)	UG/puits	Moyenne UG/puits	B(log)	gol	%
			34.55	3.18E+01				
1TAR1F	2.38E+01	3.58	34.44	3.41E+01	3.30E+01	3.07	-0.51	30.9
			34.14	4.17E+01				
2TAR1F	2.38E+01	3.58	33.99	4.59E+01	4.38E+01	3.2	-0.38	41.7
			33.49	8.91E+01				
3TAR1F	4.84E+01	3.89	33.15	1.11E+02	9.99E+01	3.56	-0.33	46.8
			32.7	1.47E+02				
4TAR1F	4.84E+01	3.89	32.62	1.55E+02	1.51E+02	3.74	-0.15	70.8
			33.18	7.73E+01				
STAR1F	2.84E+01	3.66	32.9	9.34E+01	8.54E+01	3.49	-0.17	9.79
			33.7	5.43E+01				
6TAR1F	2.84E+01	3.66	33.67	5.52E+01	5.47E+01	3.29	-0.37	42.7
			33.32	6.97E+01				
7TAR1F	4.56E+01	3.86	33.03	8.45E+01	7.71E+01	3.44	-0.42	38
			32.35	1.33E+02				
8TAR1F	4.56E+01	3.86	32.64	1.10E+02	1.21E+02	3.64	-0.22	60.3
			32.96	1.02E+02				
9TAR1F	4.97E+01	3.9	32.68	1.23E+02	1.12E+02	3.61	-0.29	51.3
			32.48	1.41E+02				
10TAR1F	4.97E+01	3.9	32.8	1.13E+02	1.27E+02	3.66	-0.24	57.5
						·		
FDRS Shor	EDRS Short Protocol		Rende	ment moven	Rendement moven nour le niveau 1 000 115/1	1/9	-0.31	20.8

	Valeur de dopage	dopage		Résu	Résultat analyse		Rendement	ment
Echantillon	UG/puits	A(log)	C(t)	UG/puits	Moyenne UG/puits	B(log)	gol	%
			96'22	2.48E+03				
1TAR2F	2.17E+03	5.54	28.03	2.37E+03	2.42E+03	4.94	-0.6	25.1
			27.86	2.65E+03				
2TAR2F	2.17E+03	5.54	27.92	2.54E+03	2.60E+03	4.97	-0.57	26.9
			26.35	8.19E+03				
3TAR2F	3.63E+03	5.76	26.39	7.99E+03	8.09E+03	5.46	-0.3	50.1
			26.14	9.33E+03				
4TAR2F	3.63E+03	5.76	26.18	9.08E+03	9.21E+03	5.52	-0.24	57.5
			26.68	6.55E+03				
STAR2F	2.57E+03	5.61	26.56	7.12E+03	6.84E+03	5.39	-0.22	60.3
			26.78	6.12E+03				
6TAR2F	2.57E+03	5.61	26.76	6.22E+03	6.17E+03	5.35	-0.26	55
			26.35	7.45E+03				
7TAR2F	2.99E+03	5.68	26.24	8.02E+03	7.73E+03	5.44	-0.24	57.5
			26.12	8.76E+03				
8TAR2F	2.99E+03	5.68	26.25	7.96E+03	8.31E+03	5.48	-0.2	63.1
			26.57	8.30E+03				
9TAR2F	4.43E+03	5.85	26.7	7.56E+03	7.93E+03	5.45	-0.4	39.8
			26.35	9.66E+03				
10TAR2F	4.43E+03	5.85	26.42	9.17E+03	9.42E+03	5.53	-0.32	47.9

Rendement mayen pour le niveau 100 000 UG/L

Appendix 6: Selectivity

Results from iQ-Check™ Quanti L. pneumophila – Extension 2011 - v01 achieved IPL santé, environnement durables Nord

Sélectivité Souches cibles : Legionella pneumophila

	South	Origina	Taux cible inoculum		IQ Check Legionella spp	ila spp
			(Eq UG/puits)	Ct (moy)	UG/puits	Détection Legionella pneumophila
-	L. pneumophila ser 1	CIP 103854T	1,00E+02	33,17	122	Détecté
7	L. pneumophila ser 2	CHUL LG 1007 3002	1,00E+02	33,32	135	Détecté
က	L. pneumophila ser 3	CHUL LG 1016 2014	1,00E+02	32,94	122	Détecté
4	L. pneumophila ser 4	CHUL LG 1006 3010	1,00E+02	33,31	120	Détecté
2	L. pneumophila ser 5	CHUL LG 1008 5013	1,00E+02	33,38	86	Détecté
9	L. pneumophila ser 6	ATCC 33215	1,00E+02	33,13	116	Détecté
7	L. pneumophila ser 7	CHUL LG 1022 1105	1,00E+02	33,12	122	Détecté
80	L. pneumophila ser 8	CHUL LG 1009 3009	1,00E+02	32,95	111	Détecté
6	L. pneumophila ser 9	CHUL LG 0925 4012	1,00E+02	33,51	143	Détecté
10	L. pneumophila ser 10	CHUL LG 1009 2018	1,00E+02	33,02	113	Détecté
=======================================	11 L. pneumophila ser 11	CHUL LG 0841 3021	1,00E+02	33,20	106	Détecté
12	12 L. pneumophila ser 12	CHUL LG 1009 3041	1,00E+02	33,20	126	Détecté
13	13 L. pneumophila ser 13	CHUL LG 1022 1006	1,00E+02	33,54	127	Détecté
14	14 L. pneumophila ser 14	CHUL LG 0916 4027	1,00E+02	33,26	143	Détecté
15	15 L. pneumophila ser 15	CHUL LG 0312 4049	1,00E+02	33,18	86	Détecté

Exclusivité

	edunos	Origine	Taux cible inoculum	IQ Check	IQ Check Legionella pneumophila
			(Eq UG/puits)	Ct (moy)	Détection
-	Legionella anisa	CIP 103870	1,00E+04	N/A	Non détecté
2	Legionella bozemanii	CIP 103872 (éq ATCC 33217)ª	1,00E+04	N/A	Non détecté
က	Legionella dunmofii	CIP 103876 (éq ATCC 33279) ^b	1,00E+04	N/A	Non détecté
4	Legionella gormanii	ATCC 33297	1,00E+04	N/A	Non détecté
2	Legionella jordanis	ATCC 33623 (éq CIP 105268)	1,00E+04	N/A	Non détecté
9	Legionella longbeachae	ATCC 33462 (éq CIP 103880)	1,00E+04	N/A	Non détecté
7	Legionella micdadei	CIP 103882 (éq ATCC 33218)°	1,00E+04	N/A	Non détecté
80	Legionella parisiensis	NCTC 11983 (éq CIP 103847)	1,00E+04	N/A	Non détecté
6	Legionella tucsonensis	CHUL LG 08495014	1,00E+04	N/A	Non détecté
10	Aeromonas hydrophila	Environnement	1,00E+04	N/A	Non détecté
1	Alcaligenes faecalis	CIP 60.80	1,00E+04	N/A	Non détecté
12	Bacillus subtilis	CCM 1999	1,00E+04	N/A	Non détecté
13	Burkholderia cepacia	Eau de douche, La chapelle St Mesnin	1,00E+04	N/A	Non détecté
4	Clostridium	Eau de puits, Boghni	1,00E+04	N/A	Non détecté
15	Enterobacter aerogenes	Environnement	1,00E+04	N/A	Non détecté
16	Escherichia coli	Eau d'alimentation, Liencourt	1,00E+04	N/A	Non détecté
17	Flavobacterium	Environnement	1,00E+04	N/A	Non détecté
18	Klebsiella oxytoca	ATCC 49473	1,00E+04	N/A	Non détecté
19	Listeria monocytogenes	CCM 5576	1,00E+04	N/A	Non détecté
20	Proteus vulgaris	Environnement	1,00E+04	N/A	Non détecté
21	Pseudomonas aeruginosa	Eau d'alimentation, Lille	1,00E+04	N/A	Non détecté
22	Pseudomonas fluorescens	Environnement	1,00E+04	N/A	Non détecté
23	Pseudomonas putida	Environnement	1,00E+04	N/A	Non détecté
24	Serratia marcescens	Environnement	1,00E+04	N/A	Non détecté
25	Stenotrophomonas maltophila	Canal de la Deûle, Lille	1,00E+04	N/A	Non détecté

^aFluoribacter bozemanae ^bFluoribacter dumofii ^cTatlockia micdade